53 research outputs found

    A rationale for non-linear responses to strong electric fields in molecular dynamics simulations

    Get PDF
    Many approaches for calculation of the field-dependent electric properties of water solutions rely on the Onsager and Kirkwood theories of polar dielectrics. Such basic theories implicitly consider the electric field intensity to fulfill the so-called 'weak field conditions', i.e. to produce a linear response in the system. In this work we made use of molecular dynamics simulations to investigate possible non-linear effects induced by high intensity electric fields, specifically continuous wave bursts with nanosecond duration, comparing them with the ones predicted by the theory. We found that field intensities above 0.15 V nm(-1) produce remarkable nonlinear responses in the whole 100 MHz-100 GHz frequency window considered, with the onset of higher order polarization signals, which are the clear fingerprint of harmonic distorsions. That non-linear response turned out to depend on the considered frequency. We finally show that MD outcomes are consistent with a modelization based on an extended formulation of the Langevin function including a frequency-dependent parameter

    Nanosecond Pulsed Electric Signals Can Affect Electrostatic Environment of Protiens Below the Threshold of Conformational Effects: The Case Study of SOD1 With a Molecular Simulation Study

    Get PDF
    Electric fields can be a powerful tool to interact with enzymes or proteins, with an intriguing perspective to allow protein manipulation. Recently, researchers have focused the interest on intracellular enzyme modifications triggered by the application of nanosecond pulsed electric fields. These findings were also supported by theoretical predictions from molecular dynamics simulations focussing on significant variations in protein secondary structures. In this work, a theoretical study utilizing molecular dynamics simulations is proposed to explore effects of electric fields of high intensity and very short nanosecond duration applied to the superoxide dismutase (Cu/Zn-SOD or SOD-1), an important enzyme involved in the cellular antioxidant defence mechanism. The effects of 100-nanosecond pulsed electric fields, with intensities ranging from 108 to 7x108 V/m, on a single SOD1 enzyme are presented. We demonstrated that the lowest intensity of 108 V/m, although not inducing structural changes, can produce electrostatic modifications on the reaction centre of the enzyme, as apparent from the dipolar response and the electric field distribution of the protein active site. Electric pulses above 5x108 V/m produced a fast transition between the folded and a partially denatured state, as inferred by the secondary structures analysis. Finally, for the highest field intensity used (7x108 V/m), a not reversible transition toward an unfolded state was observed

    Electric Field Bridging-Effect in Electrified Microfibrils’ Scaffolds

    Get PDF
    Introduction: The use of biocompatible scaffolds combined with the implantation of neural stem cells, is increasingly being investigated to promote the regeneration of damaged neural tissue, for instance, after a Spinal Cord Injury (SCI). In particular, aligned Polylactic Acid (PLA) microfibrils’ scaffolds are capable of supporting cells, promoting their survival and guiding their differentiation in neural lineage to repair the lesion. Despite its biocompatible nature, PLA is an electrically insulating material and thus it could be detrimental for increasingly common scaffolds’ electric functionalization, aimed at accelerating the cellular processes. In this context, the European RISEUP project aims to combine high intense microseconds pulses and DC stimulation with neurogenesis, supported by a PLA microfibrils’ scaffold. Methods: In this paper a numerical study on the effect of microfibrils’ scaffolds on the E-field distribution, in planar interdigitated electrodes, is presented. Realistic microfibrils’ 3D CAD models have been built to carry out a numerical dosimetry study, through Comsol Multiphysics software. Results: Under a voltage of 10 V, microfibrils redistribute the E-field values focalizing the field streamlines in the spaces between the fibers, allowing the field to pass and reach maximum values up to 100 kV/m and values comparable with the bare electrodes’ device (without fibers). Discussion: Globally the median E-field inside the scaffolded electrodes is the 90% of the nominal field, allowing an adequate cells’ exposure

    Transcriptomic profiling of calcified aortic valves in clonal hematopoiesis of indeterminate potential carriers

    Get PDF
    Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by the presence of clones of mutated blood cells without overt blood diseases. In the last few years, it has emerged that CHIP is associated with atherosclerosis and coronary calcification and that it is an independent determinant of cardiovascular mortality. Recently, CHIP has been found to occur frequently in patients with calcific aortic valve disease (CAVD) and it is associated with a poor prognosis after valve replacement. We assessed the frequency of CHIP by DNA sequencing in the blood cells of 168 CAVD patients undergoing surgical aortic valve replacement or transcatheter aortic valve implantation and investigated the effect of CHIP on 12 months survival. To investigate the pathological process of CAVD in CHIP carriers, we compared by RNA-Seq the aortic valve transcriptome of patients with or without CHIP and non-calcific controls. Transcriptomics data were validated by immunohistochemistry on formalin-embedded aortic valve samples. We confirm that CHIP is common in CAVD patients and that its presence is associated with higher mortality following valve replacement. Additionally, we show, for the first time, that CHIP is often accompanied by a broad cellular and humoral immune response in the explanted aortic valve. Our results suggest that an excessive inflammatory response in CHIP patients may be related to the onset and/or progression of CAVD and point to B cells as possible new effectors of CHIP-induced inflammation

    Fermentation of Vaccinium floribundum Berries with Lactiplantibacillus plantarum Reduces Oxidative Stress in Endothelial Cells and Modulates Macrophages Function

    Get PDF
    Accumulating evidence suggests that high consumption of natural antioxidants promotes health by reducing oxidative stress and, thus, the risk of developing cardiovascular diseases. Similarly, fermentation of natural compounds with lactic acid bacteria (LAB), such as Lactiplantibacillus plantarum, enhances their beneficial properties as regulators of the immune, digestive, and cardiovascular system. We investigated the effects of fermentation with Lactiplantibacillus plantarum on the antioxidant and immunomodulatory effects of Pushgay berries (Vaccinium floribundum, Ericaceae family) in human umbilical vein endothelial cells (HUVECs) and macrophage cell line RAW264.7. Polyphenol content was assayed by Folin-Ciocalteu and HPLC-MS/MS analysis. The effects of berries solutions on cell viability or proliferation were assessed by WST8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt and Lactate dehydrogenase (LDH) release, Trypan blue exclusion test, and Alamar blue assay. Antioxidant activity was evaluated by a cell-based chemiluminescent probe for the detection of intracellular H2O2 production in HUVECs. Heme oxygenase-1 (HO-1) expression levels were investigated by RT-qPCR. Glutathione reductase (GR), glutathione peroxidase (Gpx), superoxide dismutase (SOD), and catalase (CAT) activities, as markers of intracellular antioxidant defense, were evaluated by spectrophotometric analysis. The immunomodulatory activity was examined in RAW 264.7 by quantification of inducible nitric oxide synthase (iNOS) and Tumor Necrosis Factor-alpha (TNF alpha) by RT-qPCR. Data showed that fermentation of Pushgay berries (i) enhances the content of quercetin aglycone, and (ii) increases their intracellular antioxidant activity, as indicated by the reduction in H2O2-induced cell death and the decrease in H2O2-induced HO-1 gene expression in HUVECs treated for 24 h with fermented berries solution (10 mu g/mL). Moreover, treatment with Pushgay berries for 72 h (10 mu g/mL) promotes cells growth in RAW 264.7, and only fermented Pushgay berries increase the expression of iNOS in the same cell line. Taken together, our results show that LAB fermentation of Pushgay berries enhances their antioxidant and immunomodulatory properties

    MECCANISMI DI AZIONE ED EFFETTI SUI SISTEMI BIOLOGICI DEI CAMPI ELETTROMAGNETICI

    No full text
    In the present research activity, the electromagnetic field action on microscopic biological structures was theoretically studied, in order to have deeper insight into the interaction occurring at the molecular and macromolecular levels of the biological scale of complexity

    Meccanismi di azione ed effetti sui sistemi biologici dei campi elettromagnetici

    No full text
    In the present research activity, the electromagnetic field action on microscopic biological structures was theoretically studied, in order to have deeper insight into the interaction occurring at the molecular and macromolecular levels of the biological scale of complexity

    Electroporation mechanisms: The role of lipid orientation in the kinetics of pore formation

    No full text
    Electroporation is a well-established technique used to stimulate cells, enhancing membrane permeability. Although the biological phenomena occurring after the poration process have been widely studied, the physical mechanisms of pore formation are not clearly understood. In this work we investigated by means of molecular dynamics simulations the kinetics of pore formation, linking the different stages of poration to specific arrangements of lipid membrane domains.Clinical Relevance-The approach followed in this study aims to shed light on the molecular mechanisms at the basis of the electroporation technique, nowadays used to enhance the entrance of poorly permeant anticancer drugs into tumor cells, for gene electrotransfer and all the other applications exploiting the modulation of cell membrane properties

    Electroporation mechanism: Review of molecular models based on computer simulation

    No full text
    A review of molecular models explaining the basic mechanism of electroporation is presented. Essentially it is argued that the electric field applied is able to promote pore formation on the lipid bilayer, but different parameters may play a key role. © 2012 IEEE

    In silico characterization of protein partial molecular volumes and hydration shells

    No full text
    In this paper we present a computational approach, based on NVT molecular dynamics trajectories, that allows the direct evaluation of the protein partial molecular volume. The results obtained for five different globular proteins demonstrate the accuracy of this computational procedure in reproducing protein partial molecular volumes, providing quantitative characterization of the hydration shell in terms of the protein excluded volume, hydration shell ellipsoidal volume and related solvent density. Remarkably, our data indicate for the hydration shell a ≈10% solvent density increase with respect to the liquid water bulk density, in excellent agreement with the available experimental data
    • …
    corecore