175 research outputs found
Valence-Specific Modulation in the Accumulation of Perceptual Evidence Prior to Visual Scene Recognition
Visual scene recognition is a dynamic process through which incoming sensory information is iteratively compared with predictions regarding the most likely identity of the input stimulus. In this study, we used a novel progressive unfolding task to characterize the accumulation of perceptual evidence prior to scene recognition, and its potential modulation by the emotional valence of these scenes. Our results show that emotional (pleasant and unpleasant) scenes led to slower accumulation of evidence compared to neutral scenes. In addition, when controlling for the potential contribution of non-emotional factors (i.e., familiarity and complexity of the pictures), our results confirm a reliable shift in the accumulation of evidence for pleasant relative to neutral and unpleasant scenes, suggesting a valence-specific effect. These findings indicate that proactive iterations between sensory processing and top-down predictions during scene recognition are reliably influenced by the rapidly extracted (positive) emotional valence of the visual stimuli. We interpret these findings in accordance with the notion of a genuine positivity offset during emotional scene recognition
Microbial Maintenance: A Critical Review on Its Quantification
Microbial maintenance is an important concept in microbiology. Its quantification, however, is a subject of continuous debate, which seems to be caused by (1) its definition, which includes nongrowth components other than maintenance; (2) the existence of partly overlapping concepts; (3) the evolution of variables as constants; and (4) the neglect of cell death in microbial dynamics. The two historically most important parameters describing maintenance, the specific maintenance rate and the maintenance coefficient, are based on partly different nongrowth components. There is thus no constant relation between these parameters and previous equations on this subject are wrong. In addition, the partial overlap between these parameters does not allow the use of a simple combination of these parameters. This also applies for combinations of a threshold concentration with one of the other estimates of maintenance. Maintenance estimates should ideally explicitly describe each nongrowth component. A conceptual model is introduced that describes their relative importance and reconciles the various concepts and definitions. The sensitivity of maintenance on underlying components was analyzed and indicated that overall maintenance depends nonlinearly on relative death rates, relative growth rates, growth yield, and endogenous metabolism. This quantitative sensitivity analysis explains the felt need to develop growth-dependent adaptations of existing maintenance parameters, and indicates the importance of distinguishing the various nongrowth components. Future experiments should verify the sensitivity of maintenance components under cellular and environmental conditions
Recommended from our members
Shading Beats Binocular Disparity in Depth from Luminance Gradients: Evidence against a Maximum Likelihood Principle for Cue Combination
Perceived depth is conveyed by multiple cues, including binocular disparity and luminance shading. Depth perception from luminance shading information depends on the perceptual assumption for the incident light, which has been shown to default to a diffuse illumination assumption. We focus on the case of sinusoidally corrugated surfaces to ask how shading and disparity cues combine defined by the joint luminance gradients and intrinsic disparity modulation that would occur in viewing the physical corrugation of a uniform surface under diffuse illumination. Such surfaces were simulated with a sinusoidal luminance modulation (0.26 or 1.8 cy/deg, contrast 20%-80%) modulated either in-phase or in opposite phase with a sinusoidal disparity of the same corrugation frequency, with disparity amplitudes ranging from 0’-20’. The observers’ task was to adjust the binocular disparity of a comparison random-dot stereogram surface to match the perceived depth of the joint luminance/disparitymodulated corrugation target. Regardless of target spatial frequency, the perceived target depth increased with the luminance contrast and depended on luminance phase but was largely unaffected by the luminance disparity modulation. These results validate the idea that human observers can use the diffuse illumination assumption to perceive depth from luminance gradients alone without making an assumption of light direction. For depth judgments with combined cues, the observers gave much greater weighting to the luminance shading than to the disparity modulation of the targets. The results were not well-fit by a Bayesian cue-combination model weighted in proportion to the variance of the measurements for each cue in isolation. Instead, they suggest that the visual system uses disjunctive mechanisms to process these two types of information rather than combining them according to their likelihood ratios
Surgery for scapula process fractures: Good outcome in 26 patients
Background Generally, scapula process fractures (coracoid and acromion) have been treated nonoperatively with favorable outcome, with the exception of widely displaced fractures. Very little has been published, however, regarding the operative management of such fractures and the literature that is available involves very few patients. Our hypothesis was that operative treatment of displaced acromion and coracoid fractures is a safe and effective treatment that yields favorable surgical results
Nonspecific synaptic plasticity improves the recognition of sparse patterns degraded by local noise
Safaryan, K. et al. Nonspecific synaptic plasticity improves the recognition of sparse patterns degraded by local noise. Sci. Rep. 7, 46550; doi: 10.1038/srep46550 (2017). This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ © The Author(s) 2017.Many forms of synaptic plasticity require the local production of volatile or rapidly diffusing substances such as nitric oxide. The nonspecific plasticity these neuromodulators may induce at neighboring non-active synapses is thought to be detrimental for the specificity of memory storage. We show here that memory retrieval may benefit from this non-specific plasticity when the applied sparse binary input patterns are degraded by local noise. Simulations of a biophysically realistic model of a cerebellar Purkinje cell in a pattern recognition task show that, in the absence of noise, leakage of plasticity to adjacent synapses degrades the recognition of sparse static patterns. However, above a local noise level of 20 %, the model with nonspecific plasticity outperforms the standard, specific model. The gain in performance is greatest when the spatial distribution of noise in the input matches the range of diffusion-induced plasticity. Hence non-specific plasticity may offer a benefit in noisy environments or when the pressure to generalize is strong.Peer reviewe
A Customer Perspective on Product Eliminations: How the Removal of Products Affects Customers and Business Relationships
Regardless of the apparent need for product
eliminations, many managers hesitate to act as
they fear deleterious effects on customer satisfaction and loyalty. Other managers do
carry out product eliminations, but often fail
to consider the consequences for customers
and business relationships. Given the relevance
and problems of product eliminations, research
on this topic in general and on the
consequences for customers and business
relationships in particular is surprisingly scarce. Therefore, this empirical study explores how and to what extent the elimination of a
product negatively affects customers and
business relationships. Results indicate that
eliminating a product may result in severe
economic and psychological costs to customers,
thereby seriously decreasing customer satisfaction and loyalty. This paper also shows
that these costs are not exogenous in nature. Instead, depending on the characteristics
of the eliminated product these costs are
found to be more or less strongly driven by a
company’s behavior when implementing the
elimination at the customer interface
Feedforward and recurrent inhibitory receptive fields of principal cells in the cat’s dorsal lateral geniculate nucleus
Principal cells in the dorsal lateral geniculate nucleus receive both feedforward and recurrent inhibition. Despite many years of study, the receptive field structure of these inhibitory mechanisms has not been determined. Here, we have used intracellular recordings in vivo to differentiate between the two types of inhibition and map their respective receptive fields. The feedforward inhibition of a principal cell originates from the same type of retinal ganglion cells as its excitation, while the recurrent inhibition is provided by both on- and off-centre cells. Both inhibitory effects are strongest at the centre of the excitatory receptive field. The diameter of the feedforward inhibitory field is two times larger, and the recurrent two to four times larger than the excitatory field centre. The inhibitory circuitry is similar for X and Y principal cells
Visualizing the Distribution of Synapses from Individual Neurons in the Mouse Brain
BACKGROUND:Proper function of the mammalian brain relies on the establishment of highly specific synaptic connections among billions of neurons. To understand how complex neural circuits function, it is crucial to precisely describe neuronal connectivity and the distributions of synapses to and from individual neurons. METHODS AND FINDINGS:In this study, we present a new genetic synaptic labeling method that relies on expression of a presynaptic marker, synaptophysin-GFP (Syp-GFP) in individual neurons in vivo. We assess the reliability of this method and use it to analyze the spatial patterning of synapses in developing and mature cerebellar granule cells (GCs). In immature GCs, Syp-GFP is distributed in both axonal and dendritic regions. Upon maturation, it becomes strongly enriched in axons. In mature GCs, we analyzed synapses along their ascending segments and parallel fibers. We observe no differences in presynaptic distribution between GCs born at different developmental time points and thus having varied depths of projections in the molecular layer. We found that the mean densities of synapses along the parallel fiber and the ascending segment above the Purkinje cell (PC) layer are statistically indistinguishable, and higher than previous estimates. Interestingly, presynaptic terminals were also found in the ascending segments of GCs below and within the PC layer, with the mean densities two-fold lower than that above the PC layer. The difference in the density of synapses in these parts of the ascending segment likely reflects the regional differences in postsynaptic target cells of GCs. CONCLUSIONS:The ability to visualize synapses of single neurons in vivo is valuable for studying synaptogenesis and synaptic plasticity within individual neurons as well as information flow in neural circuits
Complex Processes from Dynamical Architectures with Time-Scale Hierarchy
The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures) relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase) flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes) and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes
Interaction between Purkinje Cells and Inhibitory Interneurons May Create Adjustable Output Waveforms to Generate Timed Cerebellar Output
We develop a new model that explains how the cerebellum may generate the timing in classical delay eyeblink conditioning. Recent studies show that both Purkinje cells (PCs) and inhibitory interneurons (INs) have parallel signal processing streams with two time scales: an AMPA receptor-mediated fast process and a metabotropic glutamate receptor (mGluR)-mediated slow process. Moreover, one consistent finding is an increased excitability of PC dendrites (in Larsell's lobule HVI) in animals when they acquire the classical delay eyeblink conditioning naturally, in contrast to in vitro studies, where learning involves long-term depression (LTD). Our model proposes that the delayed response comes from the slow dynamics of mGluR-mediated IP3 activation, and the ensuing calcium concentration change, and not from LTP/LTD. The conditioned stimulus (tone), arriving on the parallel fibers, triggers this slow activation in INs and PC spines. These excitatory (from PC spines) and inhibitory (from INs) signals then interact at the PC dendrites to generate variable waveforms of PC activation. When the unconditioned stimulus (puff), arriving on the climbing fibers, is coupled frequently with this slow activation the waveform is amplified (due to an increased excitability) and leads to a timed pause in the PC population. The disinhibition of deep cerebellar nuclei by this timed pause causes the delayed conditioned response. This suggested PC-IN interaction emphasizes a richer role of the INs in learning and also conforms to the recent evidence that mGluR in the cerebellar cortex may participate in slow motor execution. We show that the suggested mechanism can endow the cerebellar cortex with the versatility to learn almost any temporal pattern, in addition to those that arise in classical conditioning
- …