16 research outputs found

    Mechanistic basis for ubiquitin modulation of a protein energy landscape

    No full text
    Ubiquitin is a common posttranslational modification canonically associated with targeting proteins to the 26S proteasome for degradation and also plays a role in numerous other nondegradative cellular processes. Ubiquitination at certain sites destabilizes the substrate protein, with consequences for proteasomal processing, while ubiquitination at other sites has little energetic effect. How this site specificity-and, by extension, the myriad effects of ubiquitination on substrate proteins-arises remains unknown. Here, we systematically characterize the atomic-level effects of ubiquitination at various sites on a model protein, barstar, using a combination of NMR, hydrogen-deuterium exchange mass spectrometry, and molecular dynamics simulation. We find that, regardless of the site of modification, ubiquitination does not induce large structural rearrangements in the substrate. Destabilizing modifications, however, increase fluctuations from the native state resulting in exposure of the substrate's C terminus. Both of the sites occur in regions of barstar with relatively high conformational flexibility. Nevertheless, destabilization appears to occur through different thermodynamic mechanisms, involving a reduction in entropy in one case and a loss in enthalpy in another. By contrast, ubiquitination at a nondestabilizing site protects the substrate C terminus through intermittent formation of a structural motif with the last three residues of ubiquitin. Thus, the biophysical effects of ubiquitination at a given site depend greatly on local context. Taken together, our results reveal how a single posttranslational modification can generate a broad array of distinct effects, providing a framework to guide the design of proteins and therapeutics with desired degradation and quality control properties

    Bethesda categorization of thyroid nodule cytology and prediction of thyroid cancer type and prognosis

    No full text
    Background: Since its inception, the Bethesda System for Reporting Thyroid Cytopathology (TBS) has been widely adopted. Each category conveys a risk of malignancy and recommended next steps, though it is unclear if each category also predicts the type and extent of malignancy. If so, this would greatly expand the utility of the TBS by providing prognostic information in addition to baseline cancer risk. Methods: All patients prospectively enrolled into the authors' thyroid nodule database from 1995 to 2013 with histologically proven malignancy were analyzed. The primary ultrasound-guided fine-needle aspiration cytology (AUS, atypia of unknown significance; FN, follicular neoplasm; SUSP, suspicious; M, malignant) was correlated with the type of thyroid cancer and histological features known to impact prognosis and recurrence, including lymph node metastasis (LNM), lymphovascular invasion, and extrathyroidal extension (ETE). Primary cytology was separately correlated with higher risk malignancy. Results: A total of 1291 malignancies were identified, with primary cytology AUS in 130 cases, FN in 241 cases, SUSP in 411 cases, and M in 509 cases. AUS, SUSP, and M cytology were progressively associated with an increasing risk of high-risk disease (p < 0.001), LNM (p < 0.001), ETE (p < 0.001), and margin positivity (p < 0.001). Notably, 71% of malignancies with AUS cytology were follicular variants of papillary thyroid cancer compared with 63% with SUSP cytology and only 20% with M cytology. In contrast, high-risk malignancies were diagnosed in only 4% with AUS cytology, but 9% and 27% with SUSP and M cytology, respectively. FN conveyed a significantly increased risk of follicular thyroid carcinoma compared with all other types (28% vs. 2%; p < 0.001). A composite endpoint of recurrence, distant metastases, and death similarly increased as cytology progressed from AUS to SUSP to M (p < 0.001). Conclusion: In addition to predicting cancer prevalence, the TBS also imparts important prognostic information about cancer type, variant, and risk of recurrence. These data extend the utility of TBS classification by fostering an improved understanding of the risk posed by any confirmed malignancy

    Solution- and Adsorbed-State Structural Ensembles Predicted for the Statherin-Hydroxyapatite System

    Get PDF
    We have developed a multiscale structure prediction technique to study solution- and adsorbed-state ensembles of biomineralization proteins. The algorithm employs a Metropolis Monte Carlo-plus-minimization strategy that varies all torsional and rigid-body protein degrees of freedom. We applied the technique to fold statherin, starting from a fully extended peptide chain in solution, in the presence of hydroxyapatite (HAp) (001), (010), and (100) monoclinic crystals. Blind (unbiased) predictions capture experimentally observed macroscopic and high-resolution structural features and show minimal statherin structural change upon adsorption. The dominant structural difference between solution and adsorbed states is an experimentally observed folding event in statherin's helical binding domain. Whereas predicted statherin conformers vary slightly at three different HAp crystal faces, geometric and chemical similarities of the surfaces allow structurally promiscuous binding. Finally, we compare blind predictions with those obtained from simulation biased to satisfy all previously published solid-state NMR (ssNMR) distance and angle measurements (acquired from HAp-adsorbed statherin). Atomic clashes in these structures suggest a plausible, alternative interpretation of some ssNMR measurements as intermolecular rather than intramolecular. This work demonstrates that a combination of ssNMR and structure prediction could effectively determine high-resolution protein structures at biomineral interfaces
    corecore