13 research outputs found

    Experimental and ab Initio Studies of Deep-Bulk Traps in Doped Rare-Earth Oxide Thick Films

    Get PDF
    Lanthanum-doped CeO2 is a promising semiconductor for gas sensing. A combined study applying impedance spectroscopy and first-principles calculations was performed for pure and lanthanum-doped samples. The results showed a strong influence of the localized Ce 4f states on the electrical conduction processes and an electrical resistance increase as a function of the exposure to vacuum and air atmospheres. After its modification with a rare-earth element along with exposure to reducing and oxidizing atmospheres, the observed behavior suggested the presence of multitraps, which depended on the described equilibrium between the oxygen vacancies (Vo x ↔ VO· ↔ VO· ) in a disordered deep-bulk trap location. According to the DFT results, the multitraps were formed with the creation of an oxygen vacancy far from the doping atom. They were considered to be responsible for the phenomena modifying the Debye-like response. The transfer of electrons from Ce(III) to the adsorbed oxygen species, decreasing the number of electrons in the 4f state, reduced the electrical conductivity by the hopping frequency dependence of the total resistance and capacitances. This was probably due to the interactions between defective oxygen and metallic species.Fil: Silva Rosa Rocha, Leandro. Universidade Federal do São Carlos; BrasilFil: Schipani, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Aldao, Celso Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Cabral, Luís A.. Universidade Federal do São Carlos; BrasilFil: Simoes, Alexandre Z.. Faculdade de Engenharia de Guaratinguetá, Unesp; BrasilFil: Macchi, Carlos Eugenio. Universidad Nacional del Centro de la Provincia de Buenos Aires.. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Sede Tandil del Centro de Investigaciones En Fisica E Ingenieria del Centro de la Provincia de Buenos Aires.; ArgentinaFil: Marques, Gilmar Eugenio. Universidade Federal do São Carlos; BrasilFil: Ponce, Miguel Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Longo, Elson. Universidade Federal do São Carlos; Brasi

    Photocurrent-voltage relation of resonant tunneling diode photodetectors

    Get PDF
    We have investigated photodetectors based on an AlGaAs/GaAs double barrier structure with a nearby lattice-matched GaInNAs absorption layer. Photons with the telecommunication wavelength λ = 1.3 µm lead to hole accumulation close to the double barrier inducing a voltage shift ΔV(V) of the current-voltage curve, which depends strongly on the bias voltage V. A model is proposed describing ΔV(V) and the photocurrent response in excellent agreement with the experimental observations. According to the model, an interplay of the resonant tunneling diode (RTD) quantum efficiency ƞ(V), the lifetime of photogenerated and accumulated charge carriers τ(V), and the RTD current-voltage relation in the dark determines best working parameters of RTD photodetectors. Limitations and voltage dependencies of the photoresponse are discussed

    Evidence for the formation of metallic In after laser irradiation of InP

    Get PDF
    Structural and electronic changes induced by laser irradiation are currently of interest owing to the possibility to tune the mechanical, optical, and transport properties of the irradiated materials. In this work, we investigate the effects of laser irradiation on indium phosphide, InP, by modifying the electronic temperature, Te, of the system within the density functional theory framework and performing molecular dynamics simulations to prove that the laser irradiation also provokes a local thermalization effect. We found that the process can be described by a two-stage mechanism. First, at low Te values (0–1.0 eV), the laser energy induces electronic transitions, while the InP lattice remains undisturbed and cool. In the second stage (with Te in the range of 1.0–4.0 eV), both electron-electron scattering and electron-phonon coupling processes are triggered, increasing the energy of the lattice so as to provoke a Coulomb explosion, which changes some physical chemical properties of InP. The close agreement between the simulations helps explain the formation of metallic In as it is observed in the transmission electron microscopy images

    Connecting morphology and photoluminescence emissions in β-Ag2MoO4 microcrystals

    Get PDF
    This work elucidates the morphology-photoluminescence (PL) emission relationships, based on experimental and calculated results, on β-Ag2MoO4 samples synthesized by microwave-assisted hydrothermal method. It was shown that the solvent (water and ammonia) and temperature (120, 130, 140, and 150 °C) play a crucial role in the morphology and PL emissions. A crystal structure model, composed by the local coordination of both Ag and Mo atoms at bulk and exposed surfaces, was built, and the possible mechanism along the synthesis progress was proposed and analyzed. This study provides an idea for the preparation and development of β-Ag2MoO4 based materials with desirable properties

    Coherent states of phonons and Mössbauer effect

    No full text
    Neste trabalho introduzimos a representação de estados coerentes de fĂ´nons e desenvolvemos o formalismo para o tratamento do campo sujeito a excitações lineares. Obtemos a equação de Fokker-Planck para a função distribuição associada ao operador densidade assim como as amplitudes dos estados devidas Ă  excitação. Como aplicação, usamos a interação fĂłton-nĂşcleo para o estudo de algumas propriedades fundamentais do efeito Mössbauer. Obtivemos, de uma maneira muito simples, a energia e o momento linear transferidos ao cristal devido Ă  absorção ou emissĂŁo de um raio gama e a relação entre o operador criação do estado coerente /β> e a função de espalhamento Fs(k, t). Mostramos claramente que o efeito Mössbauer Ă© devido a transições de zero-fonons O efeito da temperatura sobre probabilidades de trasições e sobre medições tambĂ©m aparece de um modo claroWe introduce the representation of coherent states of phonons and develop the procedures to treat the field with linear excitation. We obtain the Fokker-Planck equation of the distribution function associated with the density operator as well as the amplitudes of the states due to the excitation. As an application, we use the interaction photon-nucleus in the study of some fundamental properties of Mössbauer effect. We obtain, in a very simple way, the energy and linear momentum transferred to the crystal due to absorption or emission of a gamma ray and the connection between the creation operator of the /β> coherent state and the scattering function Fs(k, t). We show clearly that Mössbauer effect is due to zero-phonon transitions. The effect of temperature on transition probabilities and measurements arises in a clear wa

    Coherent states of phonons and Mössbauer effect

    No full text
    Neste trabalho introduzimos a representação de estados coerentes de fĂ´nons e desenvolvemos o formalismo para o tratamento do campo sujeito a excitações lineares. Obtemos a equação de Fokker-Planck para a função distribuição associada ao operador densidade assim como as amplitudes dos estados devidas Ă  excitação. Como aplicação, usamos a interação fĂłton-nĂşcleo para o estudo de algumas propriedades fundamentais do efeito Mössbauer. Obtivemos, de uma maneira muito simples, a energia e o momento linear transferidos ao cristal devido Ă  absorção ou emissĂŁo de um raio gama e a relação entre o operador criação do estado coerente /β> e a função de espalhamento Fs(k, t). Mostramos claramente que o efeito Mössbauer Ă© devido a transições de zero-fonons O efeito da temperatura sobre probabilidades de trasições e sobre medições tambĂ©m aparece de um modo claroWe introduce the representation of coherent states of phonons and develop the procedures to treat the field with linear excitation. We obtain the Fokker-Planck equation of the distribution function associated with the density operator as well as the amplitudes of the states due to the excitation. As an application, we use the interaction photon-nucleus in the study of some fundamental properties of Mössbauer effect. We obtain, in a very simple way, the energy and linear momentum transferred to the crystal due to absorption or emission of a gamma ray and the connection between the creation operator of the /β> coherent state and the scattering function Fs(k, t). We show clearly that Mössbauer effect is due to zero-phonon transitions. The effect of temperature on transition probabilities and measurements arises in a clear wa

    Lattice vibration modes and electron–phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides

    No full text
    Transition metal dichalcogenides are at the center of intense scientific activity due to their promising applications, as well as the growing interest in basic research related to their electronic and dielectric properties. The layered structure of single-(ML) and two-layer (2ML) samples presents exciting features for light–matter interaction, electron transport, and electronic and optoelectronic applications. Lattice vibrations and electron–phonon interactions are essential for studying the above mentioned topics. Phonon spectra in ML and 2ML of MoX₂ and WX₂ (X = S, Se, and Te) families are studied using first principles calculations. A comprehensive analysis of the two-dimensional optical–phonon dispersion laws is performed, and the results illustrate the main differences between ML and 2ML for each considered semiconductor. Taking advantage of ab initio calculations, a generalization of the phenomenological Born–Huang dielectric model for long-wavelength vibrational modes around the Γ-point of the Brillouin zone (BZ) in 2ML structures is implemented. Explicit expressions are derived for the optical phonon dispersion of in-plane and out-of-plane normal modes. The set of characteristic parameters describing each long-wavelength optical branch is resolved from a direct comparison with the exact dispersion laws provided using the first principles calculations. The long-range electron–phonon Pekar–Fröhlich (PF) interaction and intra-valley electron scattering rates at the K-point of the BZ via E′ (LO) and Eul longitudinal optical oscillations are examined for the ML and 2ML structures, respectively. The non-local macroscopic screening and the coupling between the in-plane electric field and longitudinal optical mechanical oscillation, profoundly affect the PF Hamiltonian and the carrier inverse relaxation time

    Analytical model for heterogeneous crystallization kinetics of spherical glass particles

    No full text
    An analytical model developed to describe the crystallization kinetics of spherical glass particles has been derived in this work. A continuous phase transition from three-dimensional (3D)-like to 1D-like crystal growth has been considered and a procedure for the quantitative evaluation of the critical time for this 3D-1D transition is proposed. This model also allows straightforward determination of the density of surface nucleation sites on glass powders using differential scanning calorimetry data obtained under different thermal conditions. © 2009 The American Ceramic Society
    corecore