2,597 research outputs found
Free-space quantum links under diverse weather conditions
Free-space optical communication links are promising channels for
establishing secure quantum communication. Here we study the transmission of
nonclassical light through a turbulent atmospheric link under diverse weather
conditions, including rain or haze. To include these effects, the theory of
light transmission through atmospheric links in the elliptic-beam approximation
presented by Vasylyev et al. [D. Vasylyev et al., Phys. Rev. Lett. 117, 090501
(2016); arXiv:1604.01373] is further generalized.It is demonstrated, with good
agreement between theory and experiment, that low-intensity rain merely
contributes additional deterministic losses, whereas haze also introduces
additional beam deformations of the transmitted light. Based on these results,
we study theoretically the transmission of quadrature squeezing and Gaussian
entanglement under these weather conditions.Comment: 14 pages, 8 figure
Ultrasonic particle sizing in aqueous suspensions of solid particles of unknown density
Estimates of particle size distributions (PSDs) in solid-in-liquid suspensions can be made on the basis of measurements of ultrasonic wave attenuation combined with a mathematical propagation model, which typically requires seven physical parameters to describe each phase of the mixture. The estimation process is insensitive to all of these except the density of the solid particles, which may not be known or difficult to measure. This paper proposes that an unknown density value is incorporated into the sizing computation as a free variable. It is shown that this leads to an accurate estimate of PSD, as well as the unknown density
Исследование возможности проведения изотопного обмена в диоксиде углерода в каскаде газовых центрифуг
Проведено исследование применения реакций изотопного обмена при получении высокообогащенных изотопов углерода в каскаде газовых центрифуг, работающих на диоксиде углерода, и испытание опытного реактора изотопного обмена с никелевым катализатором. Показана принципиальная возможность применения реакций и реактора изотопного обмена для получения высокообогащенных изотопов углерода в каскаде газовых центрифуг
Algorithms and literate programs for weighted low-rank approximation with missing data
Linear models identification from data with missing values is posed as a weighted low-rank approximation problem with weights related to the missing values equal to zero. Alternating projections and variable projections methods for solving the resulting problem are outlined and implemented in a literate programming style, using Matlab/Octave's scripting language. The methods are evaluated on synthetic data and real data from the MovieLens data sets
Hybrid-Entanglement in Continuous Variable Systems
Entanglement is one of the most fascinating features arising from
quantum-mechanics and of great importance for quantum information science. Of
particular interest are so-called hybrid-entangled states which have the
intriguing property that they contain entanglement between different degrees of
freedom (DOFs). However, most of the current continuous variable systems only
exploit one DOF and therefore do not involve such highly complex states. We
break this barrier and demonstrate that one can exploit squeezed cylindrically
polarized optical modes to generate continuous variable states exhibiting
entanglement between the spatial and polarization DOF. We show an experimental
realization of these novel kind of states by quantum squeezing an azimuthally
polarized mode with the help of a specially tailored photonic crystal fiber
Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper box
We analyse the quantum dynamics of a micromechanical resonator capacitively
coupled to a Cooper box. With appropriate quantum state control of the Cooper
box, the resonator can be driven into a superposition of spatially separated
states. The Cooper box can also be used to probe the environmentally-induced
decoherence of the resonator superposition state.Comment: 4 pages, 3 figure
Continuous mode cooling and phonon routers for phononic quantum networks
We study the implementation of quantum state transfer protocols in phonon
networks, where in analogy to optical networks, quantum information is
transmitted through propagating phonons in extended mechanical resonator arrays
or phonon waveguides. We describe how the problem of a non-vanishing thermal
occupation of the phononic quantum channel can be overcome by implementing
optomechanical multi- and continuous mode cooling schemes to create a 'cold'
frequency window for transmitting quantum states. In addition, we discuss the
implementation of phonon circulators and switchable phonon routers, which rely
on strong coherent optomechanical interactions only, and do not require strong
magnetic fields or specific materials. Both techniques can be applied and
adapted to various physical implementations, where phonons coupled to spin or
charge based qubits are used for on-chip networking applications.Comment: 33 pages, 8 figures. Final version, a few minor changes and updated
reference
Quantum nano-electromechanics with electrons, quasiparticles and Cooper pairs: effective bath descriptions and strong feedback effects
Using a quantum noise approach, we discuss the physics of both normal metal
and superconducting single electron transistors (SET) coupled to mechanical
resonators. Particular attention is paid to the regime where transport occurs
via incoherent Cooper-pair tunneling (either via the Josephson quasiparticle
(JQP) or double Josephson quasiparticle (DJQP) process). We show that,
surprisingly, the back-action of tunneling Cooper pairs (or superconducting
quasiparticles) can be used to significantly cool the oscillator. We also
discuss the physical origin of negative damping effects in this system, and how
they can lead to a regime of strong electro-mechanical feedback, where despite
a weak SET - oscillator coupling, the motion of the oscillator strongly effects
the tunneling of the Cooper pairs. We show that in this regime, the oscillator
is characterized by an energy-dependent effective temperature. Finally, we
discuss the strong analogy between back-action effects of incoherent
Cooper-pair tunneling and ponderomotive effects in an optical cavity with a
moveable mirror; in our case, tunneling Cooper pairs play the role of the
cavity photons.Comment: 27 pages, 7 figures; submitted to the New Journal of Physics focus
issue on Nano-electromechanical Systems; error in references correcte
Theory of band gap bowing of disordered substitutional II-VI and III-V semiconductor alloys
For a wide class of technologically relevant compound III-V and II-VI
semiconductor materials AC and BC mixed crystals (alloys) of the type
A(x)B(1-x)C can be realized. As the electronic properties like the bulk band
gap vary continuously with x, any band gap in between that of the pure AC and
BC systems can be obtained by choosing the appropriate concentration x, granted
that the respective ratio is miscible and thermodynamically stable. In most
cases the band gap does not vary linearly with x, but a pronounced bowing
behavior as a function of the concentration is observed. In this paper we show
that the electronic properties of such A(x)B(1-x)C semiconductors and, in
particular, the band gap bowing can well be described and understood starting
from empirical tight binding models for the pure AC and BC systems. The
electronic properties of the A(x)B(1-x)C system can be described by choosing
the tight-binding parameters of the AC or BC system with probabilities x and
1-x, respectively. We demonstrate this by exact diagonalization of finite but
large supercells and by means of calculations within the established coherent
potential approximation (CPA). We apply this treatment to the II-VI system
Cd(x)Zn(1-x)Se, to the III-V system In(x)Ga(1-x)As and to the III-nitride
system Ga(x)Al(1-x)N.Comment: 14 pages, 10 figure
- …
