80 research outputs found
Brillouin Cooling
We analyze how to exploit Brillouin scattering for the purpose of cooling
opto-mechanical devices and present a quantum-mechanical theory for Brillouin
cooling. Our analysis shows that significant cooling ratios can be obtained
with standard experimental parameters. A further improvement of cooling
efficiency is possible by increasing the dissipation of the optical anti-Stokes
resonance.Comment: 4 pages 3 figure
Finely tuned temporal and spatial delivery of GDNF promotes enhanced nerve regeneration in a long nerve defect model
The use of growth factors, such as glial cell line-derived neurotrophic factor (GDNF), for the treatment of peripheral nerve injury has been useful in promoting axon survival and regeneration. Unfortunately, finding a method that delivers the appropriate spatial and temporal release profile to promote functional recovery has proven difficult. Some release methods result in burst release profiles too short to remain effective over the regeneration period; however, prolonged exposure to GDNF can result in axonal entrapment at the site of release. Thus, GDNF was delivered in both a spatially and temporally controlled manner using a two-phase system comprised of an affinity-based release system and conditional lentiviral GDNF overexpression from Schwann cells (SCs). Briefly, SCs were transduced with a tetracycline-inducible (Tet-On) GDNF overexpressing lentivirus before transplantation. Three-centimeter acellular nerve allografts (ANAs) were modified by injection of a GDNF-releasing fibrin scaffold under the epineurium and then used to bridge a 3 cm sciatic nerve defect. To encourage growth past the ANA, GDNF-SCs were transplanted into the distal nerve and doxycycline was administered for 4, 6, or 8 weeks to determine the optimal duration of GDNF expression in the distal nerve. Live imaging and histomorphometric analysis determined that 6 weeks of doxycycline treatment resulted in enhanced regeneration compared to 4 or 8 weeks. This enhanced regeneration resulted in increased gastrocnemius and tibialis anterior muscle mass for animals receiving doxycycline for 6 weeks. The results of this study demonstrate that strategies providing spatial and temporal control of delivery can improve axonal regeneration and functional muscle reinnervation
Observation of Spontaneous Brillouin Cooling
While radiation-pressure cooling is well known, the Brillouin scattering of
light from sound is considered an acousto-optical amplification-only process.
It was suggested that cooling could be possible in multi-resonance Brillouin
systems when phonons experience lower damping than light. However, this regime
was not accessible in traditional Brillouin systems since backscattering
enforces high acoustical frequencies associated with high mechanical damping.
Recently, forward Brillouin scattering in microcavities has allowed access to
low-frequency acoustical modes where mechanical dissipation is lower than
optical dissipation, in accordance with the requirements for cooling. Here we
experimentally demonstrate cooling via such a forward Brillouin process in a
microresonator. We show two regimes of operation for the Brillouin process:
acoustical amplification as is traditional, but also for the first time, a
Brillouin cooling regime. Cooling is mediated by an optical pump, and scattered
light, that beat and electrostrictively attenuate the Brownian motion of the
mechanical mode.Comment: Supplementary material include
Generalized nonreciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering
Synthetic magnetism has been used to control charge neutral excitations for
applications ranging from classical beam steering to quantum simulation. In
optomechanics, radiation-pressure-induced parametric coupling between optical
(photon) and mechanical (phonon) excitations may be used to break time-reversal
symmetry, providing the prerequisite for synthetic magnetism. Here we design
and fabricate a silicon optomechanical circuit with both optical and mechanical
connectivity between two optomechanical cavities. Driving the two cavities with
phase-correlated laser light results in a synthetic magnetic flux, which in
combination with dissipative coupling to the mechanical bath, leads to
nonreciprocal transport of photons with 35dB of isolation. Additionally,
optical pumping with blue-detuned light manifests as a particle non-conserving
interaction between photons and phonons, resulting in directional optical
amplification of 12dB in the isolator through direction. These results indicate
the feasibility of utilizing optomechanical circuits to create a more general
class of nonreciprocal optical devices, and further, to enable novel
topological phases for both light and sound on a microchip.Comment: 18 pages, 8 figures, 4 appendice
Severe metabolic alterations in liver cancer lead to ERK pathway activation and drug resistance
Background: The extracellular signal-regulated kinase (ERK) pathway regulates cell growth, and is hyper-activated and associated with drug resistance in hepatocellular carcinoma (HCC). Metabolic pathways are profoundly dysregulated in HCC. Whether an altered metabolic state is linked to activated ERK pathway and drug response in HCC is unaddressed.
Methods: We deprived HCC cells of glutamine to induce metabolic alterations and performed various assays, including metabolomics (with 13C-glucose isotope tracing), microarray analysis, and cell proliferation assays. Glutamine-deprived cells were also treated with kinase inhibitors (e.g. Sorafenib, Erlotinib, U0126 amongst other MEK inhibitors). We performed bioinformatics analysis and stratification of HCC tumour microarrays to determine upregulated ERK gene signatures in patients.
Findings: In a subset of HCC cells, the withdrawal of glutamine triggers a severe metabolic alteration and ERK phosphorylation (pERK). This is accompanied by resistance to the anti-proliferative effect of kinase inhibitors, despite pERK inhibition. High intracellular serine is a consistent feature of an altered metabolic state and contributes to pERK induction and the kinase inhibitor resistance. Blocking the ERK pathway facilitates cell proliferation by reprogramming metabolism, notably enhancing aerobic glycolysis. We have identified 24 highly expressed ERK gene signatures that their combined expression strongly indicates a dysregulated metabolic gene network in human HCC tissues.
Interpretation: A severely compromised metabolism lead to ERK pathway induction, and primes some HCC cells to pro-survival phenotypes upon ERK pathway blockade. Our findings offer novel insights for understanding, predicting and overcoming drug resistance in liver cancer patients
Carotid endarterectomy and carotid artery stenting utilization trends over time
<p>Abstract</p> <p>Background</p> <p>Carotid endarterectomy (CEA) has been the standard in atherosclerotic stroke prevention for over 2 decades. More recently, carotid artery stenting (CAS) has emerged as a less invasive alternative for revascularization. The purpose of this study was to investigate whether an increase in stenting parallels a decrease in endarterectomy, if there are specific patient factors that influence one intervention over the other, and how these factors may have changed over time.</p> <p>Methods</p> <p>Using a nationally representative sample of US hospital discharge records, data on CEA and CAS procedures performed from 1998 to 2008 were obtained. In total, 253,651 cases of CEA and CAS were investigated for trends in utilization over time. The specific data elements of age, gender, payer source, and race were analyzed for change over the study period, and their association with type of intervention was examined by multiple logistic regression analysis.</p> <p>Results</p> <p>Rates of intervention decreased from 1998 to 2008 (P < 0.0001). Throughout the study period, endarterectomy was the much more widely employed procedure. Its use displayed a significant downward trend (P < 0.0001), with the lowest rates of intervention occurring in 2007. In contrast, carotid artery stenting displayed a significant increase in use over the study period (P < 0.0001), with the highest intervention rates occurring in 2006. Among the specific patient factors analyzed that may have altered utilization of CEA and CAS over time, the proportion of white patients who received intervention decreased significantly (P < 0.0001). In multivariate modeling, increased age, male gender, white race, and earlier in the study period were significant positive predictors of CEA use.</p> <p>Conclusions</p> <p>Rates of carotid revascularization have decreased over time, although this has been the result of a reduction in CEA despite an overall increase in CAS. Among the specific patient factors analyzed, age, gender, race, and time were significantly associated with the utilization of these two interventions.</p
A Novel Mechanism of Programmed Cell Death in Bacteria by Toxin–Antitoxin Systems Corrupts Peptidoglycan Synthesis
Most genomes of bacteria contain toxin–antitoxin (TA) systems. These gene systems encode a toxic protein and its cognate antitoxin. Upon antitoxin degradation, the toxin induces cell stasis or death. TA systems have been linked with numerous functions, including growth modulation, genome maintenance, and stress response. Members of the epsilon/zeta TA family are found throughout the genomes of pathogenic bacteria and were shown not only to stabilize resistance plasmids but also to promote virulence. The broad distribution of epsilon/zeta systems implies that zeta toxins utilize a ubiquitous bacteriotoxic mechanism. However, whereas all other TA families known to date poison macromolecules involved in translation or replication, the target of zeta toxins remained inscrutable. We used in vivo techniques such as microscropy and permeability assays to show that pneumococcal zeta toxin PezT impairs cell wall synthesis and triggers autolysis in Escherichia coli. Subsequently, we demonstrated in vitro that zeta toxins in general phosphorylate the ubiquitous peptidoglycan precursor uridine diphosphate-N-acetylglucosamine (UNAG) and that this activity is counteracted by binding of antitoxin. After identification of the product we verified the kinase activity in vivo by analyzing metabolite extracts of cells poisoned by PezT using high pressure liquid chromatograpy (HPLC). We further show that phosphorylated UNAG inhibitis MurA, the enzyme catalyzing the initial step in bacterial peptidoglycan biosynthesis. Additionally, we provide what is to our knowledge the first crystal structure of a zeta toxin bound to its substrate. We show that zeta toxins are novel kinases that poison bacteria through global inhibition of peptidoglycan synthesis. This provides a fundamental understanding of how epsilon/zeta TA systems stabilize mobile genetic elements. Additionally, our results imply a mechanism that connects activity of zeta toxin PezT to virulence of pneumococcal infections. Finally, we discuss how phosphorylated UNAG likely poisons additional pathways of bacterial cell wall synthesis, making it an attractive lead compound for development of new antibiotics
Proceedings of the Third Caldwell Conference, St. Catherines Island, Georgia, May 9-11, 2008
341 p. : ill. (some col.), maps (some col.) ; 26 cm.
"Issued June 23, 2010."
Includes bibliographical references (p. 303-341).The late Archaic of the American Southeast is typically described as a time of population growth, innovative developments in subsistence strategies, and increased social complexity. Although it is difficult to generalize, many early Woodland communities are characterized as relatively small scale, fairly mobile foragers organized into unranked or minimally ranked lineages and clans. Early Woodland groups also seem to be more socially isolated than their late Archaic predecessors, with a decline in regional exchange networks. The papers in this volume were presented at a conference entitled "What Happened in the Late Archaic?" which was co-sponsored by the American Museum of Natural History and the St. Catherines Island Foundation and held on St. Catherines Island (Georgia), May 9-11, 2008. The Third Caldwell Conference invited the participants to engage the appropriate archaeological data from the American Southeast, specifically addressing the nature of change during the late Archaic-early Woodland transition. This volume consists of a dozen substantive papers, followed by three discussant contributions.
TABLE OF CONTENTS: Trend, tradition, and transition at the end of the Archaic / Tristram R. Kidder -- "Nothing but the river's flood" : late Archaic diaspora or disengagement in the lower Mississippi Valley and southeastern North America / Jon L. Gibson -- The two rings of St. Catherines Island : some preliminary results from the St. Catherines and McQueen shell rings / Matthew C. Sanger and David Hurst Thomas -- Two late Archaic period shell rings, St. Simon's Island, Georgia / Rochelle A. Marrinan -- The Archaic above Choctawhatchee Bay : hydrodynamics, adaptation, and abandonment / Rebecca Saunders -- Prehistoric landscapes of complexity : Archaic and Woodland period shell works, shell rings, and tree islands of the Everglades, South Florida / Margo Schwadron -- Shell rings and other settlement features as indicators of cultural continuity between the late Archaic and Woodland periods of coastal Florida / Michael Russo -- "What happened to the southeastern Archaic?" : a perspective from St. Catherines Island / David Hurst Thomas -- Leaving the rings : shell ring abandonment and the end of the late Archaic / Matthew C. Sanger -- The rhythms of space-time and the making of monuments and places during the Archaic / Victor D. Thompson -- Getting from the late Archaic to early Woodland in three middle valleys (those being the Savannah, St. Johns, and Tennessee) / Kenneth E. Sassaman -- Late Archaic? : what the hell happened to the middle Archaic? / Joe Saunders -- Thoughts on the late Archaic-early Woodland transition on the Georgia and South Carolina coasts / Chester B. DePratter -- Mounds, middens, and rapid climate change during the Archaic-Woodland transition in the southeastern United States / William H. Marquardt -- The end of the southeastern Archaic : regional interaction and archaeological interpretation / David G. Anderson
- …