10 research outputs found

    NeuroHeal Reduces Muscle Atrophy and Modulates Associated Autophagy

    Get PDF
    Muscle wasting is an unmet medical need which leads to a reduction of myofiber diameter and a negative impact on the functional performance of daily activities. We previously found that a new neuroprotective drug called NeuroHeal reduced muscle atrophy produced by transient denervation. Aiming to decipher whether NeuroHeal has a direct role in muscle biology, we used herein different models of muscle atrophy: one caused by chronic denervation, another caused by hindlimb immobilization, and lastly, an in vitro model of myotube atrophy with Tumor Necrosis Factor-α (TNFα). In all these models, we observed that NeuroHeal reduced muscle atrophy and that SIRT1 activation seems to be required for that. The treatment downregulated some critical markers of protein degradation: Muscle Ring Finger 1 (MuRF1), K48 poly-Ub chains, and p62/SQSTM1. Moreover, it seems to restore the autophagy flux associated with denervation. Hence, we envisage a prospective use of NeuroHeal at clinics for different myopathies

    Novel neuroprotective therapy with NeuroHeal by autophagy induction for damaged neonatal motoneurons

    Get PDF
    Rationale : Protective mechanisms allow healthy neurons to cope with diverse stresses. Excessive damage as well as aging can lead to defective functioning of these mechanisms. We recently designed NeuroHeal using artificial intelligence with the goal of bolstering endogenous neuroprotective mechanisms. Understanding the key nodes involved in neuroprotection will allow us to identify even more effective strategies for treatment of neurodegenerative diseases. Methods : We used a model of peripheral nerve axotomy in rat pups, that induces retrograde apoptotic death of motoneurons. Nourishing mothers received treatment with vehicle, NeuroHeal or NeuroHeal plus nicotinamide, an inhibitor of sirtuins, and analysis of the pups were performed by immunohistochemistry, electron microscopy, and immunoblotting. In vitro, the post-translational status of proteins of interest was detailed using organotypic spinal cord cultures and genetic modifications in cell lines to unravel the neuroprotective mechanisms involved. Results : We found that the concomitant activation of the NAD + -dependent deacetylase SIRT1 and the PI3K/AKT signaling pathway converge to increase the presence of deacetylated and phosphorylated FOXO3a, a transcription factor, in the nucleus. This favors the activation of autophagy, a pro-survival process, and prevents pro-apoptotic PARP1/2 cleavage. Major conclusion : NeuroHeal is a neuroprotective agent for neonatal motoneurons that fine-tunes autophagy on by converging SIRT1/AKT/FOXO3a axis. NeuroHeal is a combo of repurposed drugs that allow its readiness for prospective pediatric use

    Preclinical Development of a Therapy for Chronic Traumatic Spinal Cord Injury in Rats Using Human Wharton’s Jelly Mesenchymal Stromal Cells: Proof of Concept and Regulatory Compliance

    Get PDF
    Animal model; Cell therapy; Mesenchymal stromal cellsModelo animal; Terapia celular; Células estromales mesenquimalesModel animal; Teràpia cel·lular; Cèl·lules estromals mesenquimàtiquesBackground: the use of Mesenchymal Stromal Cells (MSC) in emerging therapies for spinal cord injury (SCI) hold the potential to improve functional recovery. However, the development of cell-based medicines is challenging and preclinical studies addressing quality, safety and efficacy must be conducted prior to clinical testing; (2) Methods: herein we present (i) the characterization of the quality attributes of MSC from the Wharton’s jelly (WJ) of the umbilical cord, (ii) safety of intrathecal infusion in a 3-month subchronic toxicity assessment study, and (iii) efficacy in a rat SCI model by controlled impaction (100 kdynes) after single (day 7 post-injury) and repeated dose of 1 × 106 MSC,WJ (days 7 and 14 post-injury) with 70-day monitoring by electrophysiological testing, motor function assessment and histology evaluation; (3) Results: no toxicity associated to MSC,WJ infusion was observed. Regarding efficacy, recovery of locomotion was promoted at early time points. Persistence of MSC,WJ was detected early after administration (day 2 post-injection) but not at days 14 and 63 post-injection. (4) Conclusions: the safety profile and signs of efficacy substantiate the suitability of the presented data for inclusion in the Investigational Medicinal Product Dossier for further consideration by the competent Regulatory Authority to proceed with clinical trials.This work has been developed in the context of the Spanish Cell Therapy Network (TerCel, expedient No.’s RD16/0011/0014, RD16/0011/0028 and RD16/00111/0036) and supported by Fundació La Marató de TV3 (grant No. 616/2012) and BST internal funding. Work in J.G.-L.’s laboratory is supported by the Spanish Advanced Therapy Network funded by Ministerio de Ciencia Innovación y Universidades de España (Instituto de Salud Carlos III (TERAV, expedient No.’s RD21/0017/0008 and RD21/0017/0022), CIBERNED (CB06/05/1105), and J.V.’s laboratory is a Consolidated Research Group (ref. 2017SGR719) by the Generalitat de Catalunya

    ATG5 overexpression is neuroprotective and attenuates cytoskeletal and vesicle-trafficking alterations in axotomized motoneurons

    Get PDF
    Injured neurons should engage endogenous mechanisms of self-protection to limit neurodegeneration. Enhancing efficacy of these mechanisms or correcting dysfunctional pathways may be a successful strategy for inducing neuroprotection. Spinal motoneurons retrogradely degenerate after proximal axotomy due to mechanical detachment (avulsion) of the nerve roots, and this limits recovery of nervous system function in patients after this type of trauma. In a previously reported proteomic analysis, we demonstrated that autophagy is a key endogenous mechanism that may allow motoneuron survival and regeneration after distal axotomy and suture of the nerve. Herein, we show that autophagy flux is dysfunctional or blocked in degenerated motoneurons after root avulsion. We also found that there were abnormalities in anterograde/retrograde motor proteins, key secretory pathway factors, and lysosome function. Further, LAMP1 protein was missorted and underglycosylated as well as the proton pump v-ATPase. In vitro modeling revealed how sequential disruptions in these systems likely lead to neurodegeneration. In vivo, we observed that cytoskeletal alterations, induced by a single injection of nocodazole, were sufficient to promote neurodegeneration of avulsed motoneurons. Besides, only pre-treatment with rapamycin, but not post-treatment, neuroprotected after nerve root avulsion. In agreement, overexpressing ATG5 in injured motoneurons led to neuroprotection and attenuation of cytoskeletal and trafficking-related abnormalities. These discoveries serve as proof of concept for autophagy-target therapy to halting the progression of neurodegenerative processes

    NeuroHeal Improves Muscle Regeneration after Injury

    No full text
    Musculoskeletal injuries represent a challenging medical problem. Although the skeletal muscle is able to regenerate and recover after injury, the process engaged with conservative therapy can be inefficient, leading to a high re-injury rate. In addition, the formation of scar tissue implies an alteration of mechanical properties in muscle. There is still a need for new treatments of the injured muscle. NeuroHeal may be one option. Published studies demonstrated that it reduces muscle atrophy due to denervation and disuse. The main objective of the present work was to assess the potential of NeuroHeal to improve muscle regeneration after traumatic injury. Secondary objectives included characterizing the effect of NeuroHeal treatment on satellite cell biology. We used a rat model of sport-induced injury in the gastrocnemius and analyzed the effects of NeuroHeal on functional recovery by means of electrophysiology and tetanic force analysis. These studies were accompanied by immunohistochemistry of the injured muscle to analyze fibrosis, satellite cell state, and fiber type. In addition, we used an in vitro model to determine the effect of NeuroHeal on myoblast biology and partially decipher its mechanism of action. The results showed that NeuroHeal treatment advanced muscle fiber recovery after injury in a preclinical model of muscle injury, and significantly reduced the formation of scar tissue. In vitro, we observed that NeuroHeal accelerated the formation of myotubes. The results pave the way for novel therapeutic avenues for muscle/tendinous disorders

    Novel therapeutic strategy for muscle disorders

    No full text
    Les alteracions musculoesquelètiques són ocasionades per diferents causes, com són malalties cròniques, distròfies musculars, malalties neurodegeneratives, lesions traumàtiques causades a diferents nivells (nerviós, muscular o ossi) i envelliment. Aquestes alteracions solen produir atròfia muscular, que és una reducció en la massa i en la funció muscular, i és determinada per un desequilibri del metabolisme proteic per un excés en la degradació de les proteïnes. El múscul esquelètic té una capacitat de regeneració limitada d’auto-reparació després d’un traumatisme o en malalties musculars. Aquesta capacitat d’auto-reparació és donada per les cèl·lules satèl·lits (CSs), que són cèl·lules mare específiques del múscul que s’activen i segueixen un procés de diferenciació donant lloc a noves fibres musculars. Actualment tots els agents farmacològics i biològics disponibles només alleugen els símptomes clínics i tenen un efecte limitat o nul en la progressió de la malaltia muscular subjacent. En alguns casos, el procés endogen de reparació muscular és insuficient, el que provoca la pèrdua de teixit contràctil, la degeneració dels greixos i el teixit cicatricial fibrós, que causen dèficits a llarg termini en l’estructura i la força muscular. Recentment hem descobert un fàrmac neuroprotector, anomenat NeuroHeal, per lesions de nervi perifèric (LNP). NeuroHeal està format per la combinació de dos fàrmacs ja aprovats (Acamprosat i Ribavirina), facilitant el seu ús a la clínica, que va ser descobert usant intel·ligència artificial i xarxes basades en la biologia de sistemes. Amb l’ús d’un model de LNP sever, vam observar que NeuroHeal millorava la regeneració dels nervis i reduïa l’atròfia muscular associada. Així doncs, ens vam proposar desxifrar el nou efecte terapèutic de NeuroHeal per als trastorns del teixit muscular, centrant-nos en models in vivo d’atròfia i lesió muscular. Vam intentar dilucidar si NeuroHeal també induïa els mecanismes de protecció contra l’atròfia i els efectes regeneratius per promoure la recuperació del teixit muscular després d’un desús o una lesió. Per saber si NeuroHeal tenia un efecte directe sobre l’atròfia muscular, vam utilitzar dos models in vivo d’atròfia, un de denervació muscular i un altre d’immobilització de les extremitats posteriors, i un model in vitro, la línia cel·lular C2C12 amb una inducció d’atròfia per TNFα. Vam observar que NeuroHeal va frenar la reducció de fibres musculars, va reduir l’activitat catalítica de l’UPS i va induir una correcta resolució de l’autofàgia. Per dilucidar si NeuroHeal modulava la regeneració muscular, vam utilitzar un model in vivo d’una lesió muscular quirúrgica que simula les lesions musculars esquelètiques més freqüents observades a la clínica esportiva. NeuroHeal va promoure la resposta regenerativa el múscul esquelètic, millorant l’activació i diferenciació de les cèl·lules satèl·lits, mitjançant l’activació de SIRT1. Això va ser acompanyat per un augment en la contracció muscular i un canvi a fibra de miosina tipus ràpida. En ambdós casos, vam observar que l’activitat de SIRT1 era necessària per als efectes protectors de NeuroHeal. En general, vam concloure que NeuroHeal podria ser utilitzat clínicament per reduir l’atròfia muscular i accelerar la regeneració muscular per diferents afeccions clíniques com malalties neurodegeneratives, lesions de nervi perifèric o lesions musculars directes, i probablement també com a tractament en diverses malalties musculars per la seva capacitat per activar els mecanismes protectors i miogènics a través de SIRT1.Las alteraciones músculo esqueléticas son ocasionadas por diferentes causas, como son enfermedades crónicas, distrofias musculares, enfermedades neurodegenerativas, lesiones traumáticas causadas a diferentes niveles (nervioso, muscular o óseo) y envejecimiento. Estas alteraciones suelen producir atrofia muscular, que es una reducción en la masa y en la función muscular, y es determinada por un desequilibrio del metabolismo proteico por un exceso en la degradación de las proteínas. El músculo esquelético tiene una capacidad de regeneración limitada de auto-reparación tras un traumatismo o en enfermedades musculares. Esa capacidad de auto-reparación es dada por las células satélites (CSs), que son células madre específicas del músculo que se activan y siguen un proceso de diferenciación dando lugar a nuevas fibras musculares. Actualmente todos los agentes farmacológicos y biológicos disponibles sólo alivian los síntomas clínicos y tienen un efecto limitado o nulo en la progresión de la enfermedad muscular subyacente. En algunos casos, el proceso endógeno de reparación muscular resulta insuficiente, lo que provoca la pérdida de tejido contráctil, la degeneración de las grasas y el tejido cicatricial fibroso, que causan déficits a largo plazo en la estructura y la fuerza muscular. Recientemente hemos descubierto un fármaco neuroprotector, llamado NeuroHeal, para lesiones del nervio periférico (LNP). NeuroHeal está formado por la combinación de dos fármacos ya aprobados (Acamprosato y Ribavirina), facilitando su uso en la clínica, que fue descubierto usando inteligencia artificial y redes basadas en la biología de sistemas. Con el uso de un modelo de LNP severo, observamos que NeuroHeal mejoraba la regeneración de los nervios y reducía la atrofia muscular asociada. Así pues, nos propusimos descifrar el novedoso efecto terapéutico de NeuroHeal para los trastornos del tejido muscular, centrándonos en modelos in vivo de atrofia y lesión muscular. Intentamos dilucidar si NeuroHeal también inducía los mecanismos de protección contra la atrofia y los efectos regenerativos para promover la recuperación del tejido muscular después de un desuso o una lesión. Para saber si NeuroHeal tenía un efecto directo sobre la atrofia muscular, utilizamos dos modelos in vivo de atrofia, uno de denervación muscular y otro de inmovilización de las extremidades posteriores, y un modelo in vitro, la línea celular C2C12 con una inducción de atrofia por TNFα. Observamos que NeuroHeal frenó la reducción de fibras musculares, redujo la actividad catalítica del UPS e indujo una correcta resolución de la autofagia. Para dilucidar si NeuroHeal modulaba la regeneración muscular, utilizamos un modelo in vivo de una lesión muscular quirúrgica que simula las lesiones musculares esqueléticas más frecuentes observadas en la clínica deportiva. NeuroHeal promovió la respuesta regenerativa del músculo esquelético, mejorando la activación y diferenciación de las células satélites, mediante la activación de SIRT1. Esto fue acompañado por un aumento en la contracción muscular y un cambio a fibra de miosina tipo rápida. En ambos casos, observamos que la actividad de SIRT1 era necesaria para los efectos protectores de NeuroHeal. En general, concluimos que NeuroHeal podría utilizarse clínicamente para reducir la atrofia muscular y acelerar la regeneración muscular para diferentes afecciones clínicas como enfermedades neurodegenerativas, lesiones del nervio periférico o lesiones musculares directas, y probablemente también como tratamiento en varias enfermedades musculares debido a su capacidad para activar los mecanismos protectores y miogénicos a través de SIRT1.Skeletal muscle alterations appear due to different reasons, such as chronic diseases, muscular dystrophies, neurodegenerative diseases, traumatic injuries at different levels (nerve, muscle, or bone), and aging. These alterations usually produce muscle atrophy, which is a reduction of muscle mass and muscle function, and is provoked by protein metabolism imbalance consisting in an excessive protein breakdown. Skeletal muscle has limited regenerative capabilities for self-repair after trauma or muscular diseases. That self-repairing ability is derived by satellite cells (SCs), which are a muscle-specific stem cells that are activated and follow a process of differentiation giving newly formed myofibers. All current available pharmacological and biological agents only relieve clinical symptoms and have limited or no effect on the progression of the underlining muscle disease. In some cases, the endogenous process of muscle repair proves insufficient, leading to loss of contractile tissue, fatty degeneration, and fibrotic scar tissue, which cause long-term deficits in muscle structure and strength. We have recently discovered a neuroprotective drug, termed as NeuroHeal, for peripheral nerve injury (PNI). NeuroHeal is based on the combination of two approved drugs (Acamprosate and Ribavirin), and was discovered using artificial intelligence and systems biology-based networks, which facilitate its readiness for clinical use. Using a model of severe PNI, we observed that NeuroHeal enhanced nerve regeneration and reduced the associated muscle atrophy. Thus, we aimed to decipher the novel therapeutic effect of NeuroHeal for muscle tissue disorders, focusing on in vivo models of muscle atrophy and muscle injury. We pursued to elucidate if NeuroHeal also endorsed protective mechanisms against atrophy and regenerative effects to promote muscle tissue recovery after disuse or injury. In order to know whether NeuroHeal had a direct effect on muscle atrophy, we used two in vivo models of atrophy, muscle denervation and a hindlimb immobilization, and in vitro model, the cell line C2C12 atrophy-induced by TNFα. We observed that NeuroHeal prevented the reduction of myofibers, reduced the catalytic activity of the UPS, and induced a correct resolution of autophagy. To elucidate whether NeuroHeal modulates muscle regeneration, we used an in vivo model of a surgically-induced lesion which mimics the most frequent skeletal muscle lesions observed in human sport clinics. NeuroHeal promoted the regenerative response of the skeletal muscle, enhancing activation and differentiation of the SCs, by the activation of SIRT1. This was accompanied by an increase in muscle contraction and a fast myosin fiber-switch. In both cases, we observed that SIRT1 activity is needed for the protective effects of NeuroHeal. Overall, we conclude that NeuroHeal could be clinically used to reduce muscle atrophy and accelerate muscle regeneration for different clinical affectations such as neurodegenerative diseases, peripheral nerve injuries, or muscle direct injuries, and probably also as a treatment in various muscle diseases due to its ability to activate protective and myogenic mechanisms via SIRT1.Universitat Autònoma de Barcelona. Programa de Doctorat en Neurocièncie

    Novel therapeutic strategy for muscle disorders

    No full text
    Les alteracions musculoesquelètiques són ocasionades per diferents causes, com són malalties cròniques, distròfies musculars, malalties neurodegeneratives, lesions traumàtiques causades a diferents nivells (nerviós, muscular o ossi) i envelliment. Aquestes alteracions solen produir atròfia muscular, que és una reducció en la massa i en la funció muscular, i és determinada per un desequilibri del metabolisme proteic per un excés en la degradació de les proteïnes. El múscul esquelètic té una capacitat de regeneració limitada d'auto-reparació després d'un traumatisme o en malalties musculars. Aquesta capacitat d'auto-reparació és donada per les cèl·lules satèl·lits (CSs), que són cèl·lules mare específiques del múscul que s'activen i segueixen un procés de diferenciació donant lloc a noves fibres musculars. Actualment tots els agents farmacològics i biològics disponibles només alleugen els símptomes clínics i tenen un efecte limitat o nul en la progressió de la malaltia muscular subjacent. En alguns casos, el procés endogen de reparació muscular és insuficient, el que provoca la pèrdua de teixit contràctil, la degeneració dels greixos i el teixit cicatricial fibrós, que causen dèficits a llarg termini en l'estructura i la força muscular. Recentment hem descobert un fàrmac neuroprotector, anomenat NeuroHeal, per lesions de nervi perifèric (LNP). NeuroHeal està format per la combinació de dos fàrmacs ja aprovats (Acamprosat i Ribavirina), facilitant el seu ús a la clínica, que va ser descobert usant intel·ligència artificial i xarxes basades en la biologia de sistemes. Amb l'ús d'un model de LNP sever, vam observar que NeuroHeal millorava la regeneració dels nervis i reduïa l'atròfia muscular associada. Així doncs, ens vam proposar desxifrar el nou efecte terapèutic de NeuroHeal per als trastorns del teixit muscular, centrant-nos en models in vivo d'atròfia i lesió muscular. Vam intentar dilucidar si NeuroHeal també induïa els mecanismes de protecció contra l'atròfia i els efectes regeneratius per promoure la recuperació del teixit muscular després d'un desús o una lesió. Per saber si NeuroHeal tenia un efecte directe sobre l'atròfia muscular, vam utilitzar dos models in vivo d'atròfia, un de denervació muscular i un altre d'immobilització de les extremitats posteriors, i un model in vitro, la línia cel·lular C2C12 amb una inducció d'atròfia per TNFα. Vam observar que NeuroHeal va frenar la reducció de fibres musculars, va reduir l'activitat catalítica de l'UPS i va induir una correcta resolució de l'autofàgia. Per dilucidar si NeuroHeal modulava la regeneració muscular, vam utilitzar un model in vivo d'una lesió muscular quirúrgica que simula les lesions musculars esquelètiques més freqüents observades a la clínica esportiva. NeuroHeal va promoure la resposta regenerativa el múscul esquelètic, millorant l'activació i diferenciació de les cèl·lules satèl·lits, mitjançant l'activació de SIRT1. Això va ser acompanyat per un augment en la contracció muscular i un canvi a fibra de miosina tipus ràpida. En ambdós casos, vam observar que l'activitat de SIRT1 era necessària per als efectes protectors de NeuroHeal. En general, vam concloure que NeuroHeal podria ser utilitzat clínicament per reduir l'atròfia muscular i accelerar la regeneració muscular per diferents afeccions clíniques com malalties neurodegeneratives, lesions de nervi perifèric o lesions musculars directes, i probablement també com a tractament en diverses malalties musculars per la seva capacitat per activar els mecanismes protectors i miogènics a través de SIRT1.Las alteraciones músculo esqueléticas son ocasionadas por diferentes causas, como son enfermedades crónicas, distrofias musculares, enfermedades neurodegenerativas, lesiones traumáticas causadas a diferentes niveles (nervioso, muscular o óseo) y envejecimiento. Estas alteraciones suelen producir atrofia muscular, que es una reducción en la masa y en la función muscular, y es determinada por un desequilibrio del metabolismo proteico por un exceso en la degradación de las proteínas. El músculo esquelético tiene una capacidad de regeneración limitada de auto-reparación tras un traumatismo o en enfermedades musculares. Esa capacidad de auto-reparación es dada por las células satélites (CSs), que son células madre específicas del músculo que se activan y siguen un proceso de diferenciación dando lugar a nuevas fibras musculares. Actualmente todos los agentes farmacológicos y biológicos disponibles sólo alivian los síntomas clínicos y tienen un efecto limitado o nulo en la progresión de la enfermedad muscular subyacente. En algunos casos, el proceso endógeno de reparación muscular resulta insuficiente, lo que provoca la pérdida de tejido contráctil, la degeneración de las grasas y el tejido cicatricial fibroso, que causan déficits a largo plazo en la estructura y la fuerza muscular. Recientemente hemos descubierto un fármaco neuroprotector, llamado NeuroHeal, para lesiones del nervio periférico (LNP). NeuroHeal está formado por la combinación de dos fármacos ya aprobados (Acamprosato y Ribavirina), facilitando su uso en la clínica, que fue descubierto usando inteligencia artificial y redes basadas en la biología de sistemas. Con el uso de un modelo de LNP severo, observamos que NeuroHeal mejoraba la regeneración de los nervios y reducía la atrofia muscular asociada. Así pues, nos propusimos descifrar el novedoso efecto terapéutico de NeuroHeal para los trastornos del tejido muscular, centrándonos en modelos in vivo de atrofia y lesión muscular. Intentamos dilucidar si NeuroHeal también inducía los mecanismos de protección contra la atrofia y los efectos regenerativos para promover la recuperación del tejido muscular después de un desuso o una lesión. Para saber si NeuroHeal tenía un efecto directo sobre la atrofia muscular, utilizamos dos modelos in vivo de atrofia, uno de denervación muscular y otro de inmovilización de las extremidades posteriores, y un modelo in vitro, la línea celular C2C12 con una inducción de atrofia por TNFα. Observamos que NeuroHeal frenó la reducción de fibras musculares, redujo la actividad catalítica del UPS e indujo una correcta resolución de la autofagia. Para dilucidar si NeuroHeal modulaba la regeneración muscular, utilizamos un modelo in vivo de una lesión muscular quirúrgica que simula las lesiones musculares esqueléticas más frecuentes observadas en la clínica deportiva. NeuroHeal promovió la respuesta regenerativa del músculo esquelético, mejorando la activación y diferenciación de las células satélites, mediante la activación de SIRT1. Esto fue acompañado por un aumento en la contracción muscular y un cambio a fibra de miosina tipo rápida. En ambos casos, observamos que la actividad de SIRT1 era necesaria para los efectos protectores de NeuroHeal. En general, concluimos que NeuroHeal podría utilizarse clínicamente para reducir la atrofia muscular y acelerar la regeneración muscular para diferentes afecciones clínicas como enfermedades neurodegenerativas, lesiones del nervio periférico o lesiones musculares directas, y probablemente también como tratamiento en varias enfermedades musculares debido a su capacidad para activar los mecanismos protectores y miogénicos a través de SIRT1.Skeletal muscle alterations appear due to different reasons, such as chronic diseases, muscular dystrophies, neurodegenerative diseases, traumatic injuries at different levels (nerve, muscle, or bone), and aging. These alterations usually produce muscle atrophy, which is a reduction of muscle mass and muscle function, and is provoked by protein metabolism imbalance consisting in an excessive protein breakdown. Skeletal muscle has limited regenerative capabilities for self-repair after trauma or muscular diseases. That self-repairing ability is derived by satellite cells (SCs), which are a muscle-specific stem cells that are activated and follow a process of differentiation giving newly formed myofibers. All current available pharmacological and biological agents only relieve clinical symptoms and have limited or no effect on the progression of the underlining muscle disease. In some cases, the endogenous process of muscle repair proves insufficient, leading to loss of contractile tissue, fatty degeneration, and fibrotic scar tissue, which cause long-term deficits in muscle structure and strength. We have recently discovered a neuroprotective drug, termed as NeuroHeal, for peripheral nerve injury (PNI). NeuroHeal is based on the combination of two approved drugs (Acamprosate and Ribavirin), and was discovered using artificial intelligence and systems biology-based networks, which facilitate its readiness for clinical use. Using a model of severe PNI, we observed that NeuroHeal enhanced nerve regeneration and reduced the associated muscle atrophy. Thus, we aimed to decipher the novel therapeutic effect of NeuroHeal for muscle tissue disorders, focusing on in vivo models of muscle atrophy and muscle injury. We pursued to elucidate if NeuroHeal also endorsed protective mechanisms against atrophy and regenerative effects to promote muscle tissue recovery after disuse or injury. In order to know whether NeuroHeal had a direct effect on muscle atrophy, we used two in vivo models of atrophy, muscle denervation and a hindlimb immobilization, and in vitro model, the cell line C2C12 atrophy-induced by TNFα. We observed that NeuroHeal prevented the reduction of myofibers, reduced the catalytic activity of the UPS, and induced a correct resolution of autophagy. To elucidate whether NeuroHeal modulates muscle regeneration, we used an in vivo model of a surgically-induced lesion which mimics the most frequent skeletal muscle lesions observed in human sport clinics. NeuroHeal promoted the regenerative response of the skeletal muscle, enhancing activation and differentiation of the SCs, by the activation of SIRT1. This was accompanied by an increase in muscle contraction and a fast myosin fiber-switch. In both cases, we observed that SIRT1 activity is needed for the protective effects of NeuroHeal. Overall, we conclude that NeuroHeal could be clinically used to reduce muscle atrophy and accelerate muscle regeneration for different clinical affectations such as neurodegenerative diseases, peripheral nerve injuries, or muscle direct injuries, and probably also as a treatment in various muscle diseases due to its ability to activate protective and myogenic mechanisms via SIRT1

    Endogenous Mechanisms of Neuroprotection : to boost or not to boost

    Get PDF
    Postmitotic cells, like neurons, must live through a lifetime. For this reason, organisms/cells have evolved with self-repair mechanisms that allow them to have a long life. The discovery workflow of neuroprotectors during the last years has focused on blocking the pathophysiological mechanisms that lead to neuronal loss in neurodegeneration. Unfortunately, only a few strategies from these studies were able to slow down or prevent neurodegeneration. There is compelling evidence demonstrating that endorsing the self-healing mechanisms that organisms/cells endogenously have, commonly referred to as cellular resilience, can arm neurons and promote their self-healing. Although enhancing these mechanisms has not yet received sufficient attention, these pathways open up new therapeutic avenues to prevent neuronal death and ameliorate neurodegeneration. Here, we highlight the main endogenous mechanisms of protection and describe their role in promoting neuron survival during neurodegeneration

    NeuroHeal Improves Muscle Regeneration after Injury

    Get PDF
    Musculoskeletal injuries represent a challenging medical problem. Although the skeletal muscle is able to regenerate and recover after injury, the process engaged with conservative therapy can be inefficient, leading to a high re-injury rate. In addition, the formation of scar tissue implies an alteration of mechanical properties in muscle. There is still a need for new treatments of the injured muscle. NeuroHeal may be one option. Published studies demonstrated that it reduces muscle atrophy due to denervation and disuse. The main objective of the present work was to assess the potential of NeuroHeal to improve muscle regeneration after traumatic injury. Secondary objectives included characterizing the effect of NeuroHeal treatment on satellite cell biology. We used a rat model of sport-induced injury in the gastrocnemius and analyzed the effects of NeuroHeal on functional recovery by means of electrophysiology and tetanic force analysis. These studies were accompanied by immunohistochemistry of the injured muscle to analyze fibrosis, satellite cell state, and fiber type. In addition, we used an in vitro model to determine the effect of NeuroHeal on myoblast biology and partially decipher its mechanism of action. The results showed that NeuroHeal treatment advanced muscle fiber recovery after injury in a preclinical model of muscle injury, and significantly reduced the formation of scar tissue. In vitro, we observed that NeuroHeal accelerated the formation of myotubes. The results pave the way for novel therapeutic avenues for muscle/tendinous disorders

    NeuroHeal reduces muscle atrophy and modulates associated autophagy

    No full text
    Muscle wasting is an unmet medical need which leads to a reduction of myofiber diameter and a negative impact on the functional performance of daily activities. We previously found that a new neuroprotective drug called NeuroHeal reduced muscle atrophy produced by transient denervation. Aiming to decipher whether NeuroHeal has a direct role in muscle biology, we used herein different models of muscle atrophy: one caused by chronic denervation, another caused by hindlimb immobilization, and lastly, an in vitro model of myotube atrophy with Tumor Necrosis Factor-α (TNFα). In all these models, we observed that NeuroHeal reduced muscle atrophy and that SIRT1 activation seems to be required for that. The treatment downregulated some critical markers of protein degradation: Muscle Ring Finger 1 (MuRF1), K48 poly-Ub chains, and p62/SQSTM1. Moreover, it seems to restore the autophagy flux associated with denervation. Hence, we envisage a prospective use of NeuroHeal at clinics for different myopathies.This work was funded by the Ministerio de Economía y Competitividad of Spain under the grant number SAF 2014-59701. We are also grateful for the support of TERCEL and CIBERNED from the Instituto de Salud Carlos III of Spain
    corecore