123 research outputs found

    DNA-probes for the highly sensitive identification of single nucleotide polymorphism using single-molecule spectroscopy

    Get PDF
    AbstractThis article presents a new, highly sensitive method for the identification of single nucleotide polymorphisms (SNPs) in homogeneous solutions using fluorescently labeled hairpin-structured oligonucleotides (smart probes) and fluorescence single-molecule spectroscopy. While the hairpin probe is closed, fluorescence intensity is quenched due to close contact between the chromophore and several guanosine residues. Upon hybridization to the respective target SNP sequence, contact is lost and the fluorescence intensity increases significantly. High specificity is achieved by blocking sequences containing mismatch with unlabeled oligonucleotides. Time-resolved single-molecule fluorescence spectroscopy enables the detection of individual smart probes passing a small detection volume. This method leads to a subnanomolar sensitivity for this single nucleotide specific DNA assay technique

    Identification of single-point mutations in mycobacterial 16S rRNA sequences by confocal single-molecule fluorescence spectroscopy

    Get PDF
    We demonstrate the specific identification of single nucleotide polymorphism (SNP) responsible for rifampicin resistance of Mycobacterium tuberculosis applying fluorescently labeled DNA-hairpin structures (smart probes) in combination with single-molecule fluorescence spectroscopy. Smart probes are singly labeled hairpin-shaped oligonucleotides bearing a fluorescent dye at the 5′ end that is quenched by guanosine residues in the complementary stem. Upon hybridization to target sequences, a conformational change occurs, reflected in a strong increase in fluorescence intensity. An excess of unlabeled (‘cold’) oligonucleotides was used to prevent the formation of secondary structures in the target sequence and thus facilitates hybridization of smart probes. Applying standard ensemble fluorescence spectroscopy we demonstrate the identification of SNPs in PCR amplicons of mycobacterial rpoB gene fragments with a detection sensitivity of 10(−8) M. To increase the detection sensitivity, confocal fluorescence microscopy was used to observe fluorescence bursts of individual smart probes freely diffusing through the detection volume. By measuring burst size, burst duration and fluorescence lifetime for each fluorescence burst the discrimination accuracy between closed and open (hybridized) smart probes could be substantially increased. The developed technique enables the identification of SNPs in 10(−11) M solutions of PCR amplicons from M.tuberculosis in only 100 s

    Cost-effectiveness of palbociclib in early breast cancer patients with a high risk of relapse: Results from the PENELOPE-B trial

    Full text link
    BACKGROUND Patients with hormone receptor-positive, HER2-negative breast cancer who have residual invasive disease after neoadjuvant chemotherapy (NACT) are at a high risk of relapse. PENELOPE-B was a double-blind, placebo-controlled, phase III trial that investigated adding palbociclib (PAL) for thirteen 28-day cycles to adjuvant endocrine therapy (ET) in these patients. Clinical results showed no significant improvement in invasive disease-free survival with PAL. METHODS We performed a pre-planned cost-effectiveness analysis of PAL within PENELOPE-B from the perspective of the German statutory health insurance. Health-related quality of life scores, collected in the trial using the EQ-5D-3L instrument, were converted to utilities based on the German valuation algorithm. Resource use was valued using German price weights. Outcomes were discounted at 3% and modeled with mixed-level linear models to adjust for attrition, repeated measurements, and residual baseline imbalances. Subgroup analyses were performed for key prognostic risk factors. Scenario analyses addressed data limitations and evaluated the robustness of the estimated cost-effectiveness of PAL to methodological choices. RESULTS The effects of PAL on quality-adjusted life years (QALYs) were marginal during the active treatment phase, increasing thereafter to 0.088 (95% confidence interval: -0.001; 0.177) QALYs gained over the 4 years of follow-up. The incremental costs were dominated by PAL averaging EUR 33,000 per patient; costs were higher in the PAL arm but not significantly different after the second year. At an incremental cost-effectiveness ratio of EUR 380,000 per QALY gained, PAL was not cost-effective compared to the standard-of-care ET. Analyses restricted to Germany and other subgroups were consistent with the main results. Findings were robust in the scenarios evaluated. CONCLUSIONS One year of PAL added to ET is not cost-effective in women with residual invasive disease after NACT in Germany

    Discovery of an Auto-Regulation Mechanism for the Maltose ABC Transporter MalFGK2

    Get PDF
    The maltose transporter MalFGK2, together with the substrate-binding protein MalE, is one of the best-characterized ABC transporters. In the conventional model, MalE captures maltose in the periplasm and delivers the sugar to the transporter. Here, using nanodiscs and proteoliposomes, we instead find that MalE is bound with high-affinity to MalFGK2 to facilitate the acquisition of the sugar. When the maltose concentration exceeds the transport capacity, MalE captures maltose and dissociates from the transporter. This mechanism explains why the transport rate is high when MalE has low affinity for maltose, and low when MalE has high affinity for maltose. Transporter-bound MalE facilitates the acquisition of the sugar at low concentrations, but also captures and dissociates from the transporter past a threshold maltose concentration. In vivo, this maltose-forced dissociation limits the rate of transport. Given the conservation of the substrate-binding proteins, this mode of allosteric regulation may be universal to ABC importers

    Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in BRCA1/2 and high risk, early breast cancer.

    Get PDF
    BACKGROUND: The randomized, double-blind OlympiA trial compared one year of the oral poly(adenosine diphosphate-ribose) polymerase) inhibitor, olaparib, to matching placebo as adjuvant therapy for patients with pathogenic or likely pathogenic variants in germline BRCA1 or BRCA2 (gBRCA1/2pv) and high-risk, human epidermal growth factor receptor 2 (HER2)-negative, early breast cancer (EBC). The first pre-specified interim analysis (IA) previously demonstrated statistically significant improvement in invasive-disease-free survival (IDFS) and distant-disease-free survival (DDFS). The olaparib-group had fewer deaths than the placebo-group, but the difference did not reach statistical significance for overall survival (OS). We now report the pre-specified second IA of OS with updates of IDFS, DDFS, and safety. PATIENTS AND METHODS: 1,836 patients were randomly assigned to olaparib or placebo following (neo)adjuvant chemotherapy (N)ACT, surgery, and radiation therapy if indicated. Endocrine therapy was given concurrently with study medication for hormone-receptor-positive-cancers. Statistical significance for OS at this IA required P<0.015. RESULTS: With median follow-up of 3.5 years, the second IA of OS demonstrated significant improvement in the olaparib-group relative to the placebo-group (HR, 0.68; 98.5% CI 0.47 to 0.97; P=0.009). Four-year OS was 89.8% in the olaparib-group and 86.4% in the placebo-group (Δ 3.4%, 95% CI -0.1% to 6.8%). Four-year IDFS for olaparib-group versus placebo-group was 82.7% versus 75.4% (Δ 7.3%, 95% CI 3.0% to 11.5%) and 4-year DDFS was 86.5% versus 79.1% (Δ 7.4%, 95% CI 3.6% to 11.3%), respectively. Subset analyses for OS, IDFS, and DDFS demonstrated benefit across major subgroups. No new safety signals were identified including no new cases of acute myelogenous leukemia or myelodysplastic syndrome (AML/MDS). CONCLUSION: With 3.5 years of median follow-up, OlympiA demonstrates statistically significant improvement in OS with adjuvant olaparib compared with placebo for gBRCA1/2pv-associated EBC and maintained improvements in the previously reported, statistically significant endpoints of IDFS and DDFS with no new safety signals

    A phase I trial of the trifunctional anti Her2 × anti CD3 antibody ertumaxomab in patients with advanced solid tumors

    Get PDF
    Background: Ertumaxomab (ertu) is a bispecific, trifunctional antibody targeting Her2/neu, CD3 and the Fcγ-receptors I, IIa, and III forming a tri-cell complex between tumor cell, T cell and accessory cells. Methods: Patients (pts) with Her2/neu (1+/SISH positive, 2+ and 3+) expressing tumors progressing after standard therapy were treated to investigate safety, tolerability and preliminary efficacy. In this study, ertu was applied i.v. in 2 cycles following a predefined dose escalating scheme. Each cycle consisted of five ascending doses (10–500 μg) applied weekly within 28 days with a 21 day treatment-free interval. If 2 pts experienced a dose limiting toxicity (DLT) at a given dose level, the maximum tolerated dose (MTD) had been exceeded. Results: Fourteen heavily pretreated pts (e.g. breast, rectal, gastric cancer) were enrolled in the four main cohorts. Three (21 %) pts had to be replaced. Two serious adverse events (SAE) with possible relation to the investigational drug were seen, both fully reversible. A DLT was not detected. Consequently, the MTD could not be determined. All adverse events (AE) were transient and completely reversible. Most frequent AEs were fatigue (14/14), pain (13/14), cephalgia (12/14), chills (11/14), nausea (8/14), fever (7/14), emesis (7/14) and diarrhea (5/14). Single doses up to 300 μg were well tolerated (total dose up to 800 μg per cycle). We observed one partial remission and two disease stabilizations after first treatment cycle. Conclusions: Single doses up to 300 μg could be safely administered in an escalating dose scheme. Immunological responses and clinical activity warrant further evaluation in patients with Her2 over expressing tumors. Trial registration EudraCT number: 2011-003201-14; ClinicalTrials.gov identifier: NCT0156941

    Comparison of immunohistochemistry with PCR for assessment of ER, PR, and Ki-67 and prediction of pathological complete response in breast cancer

    Get PDF
    Background: Proliferation may predict response to neoadjuvant therapy of breast cancer and is commonly assessed by manual scoring of slides stained by immunohistochemistry (IHC) for Ki-67 similar to ER and PgR. This method carries significant intra- and inter-observer variability. Automatic scoring of Ki-67 with digital image analysis (qIHC) or assessment of MKI67 gene expression with RT-qPCR may improve diagnostic accuracy. Methods: Ki-67 IHC visual assessment was compared to the IHC nuclear tool (AperioTM) on core biopsies from a randomized neoadjuvant clinical trial. Expression of ESR1, PGR and MKI67 by RT-qPCR was performed on RNA extracted from the same formalin-fixed paraffin-embedded tissue. Concordance between the three methods (vIHC, qIHC and RT-qPCR) was assessed for all 3 markers. The potential of Ki-67 IHC and RT-qPCR to predict pathological complete response (pCR) was evaluated using ROC analysis and non-parametric Mann-Whitney Test. Results: Correlation between methods (qIHC versus RT-qPCR) was high for ER and PgR (spearman´s r = 0.82, p < 0.0001 and r = 0.86, p < 0.0001, respectively) resulting in high levels of concordance using predefined cut-offs. When comparing qIHC of ER and PgR with RT-qPCR of ESR1 and PGR the overall agreement was 96.6 and 91.4%, respectively, while overall agreement of visual IHC with RT-qPCR was slightly lower for ER/ESR1 and PR/PGR (91.2 and 92.9%, respectively). In contrast, only a moderate correlation was observed between qIHC and RT-qPCR continuous data for Ki-67/MKI67 (Spearman’s r = 0.50, p = 0.0001). Up to now no predictive cut-off for Ki-67 assessment by IHC has been established to predict response to neoadjuvant chemotherapy. Setting the desired sensitivity at 100%, specificity for the prediction of pCR (ypT0ypN0) was significantly higher for mRNA than for protein (68.9% vs. 22.2%). Moreover, the proliferation levels in patients achieving a pCR versus not differed significantly using MKI67 RNA expression (Mann-Whitney p = 0.002), but not with qIHC of Ki-67 (Mann-Whitney p = 0.097) or vIHC of Ki-67 (p = 0.131). Conclusion: Digital image analysis can successfully be implemented for assessing ER, PR and Ki-67. IHC for ER and PR reveals high concordance with RT-qPCR. However, RT-qPCR displays a broader dynamic range and higher sensitivity than IHC. Moreover, correlation between Ki-67 qIHC and RT-qPCR is only moderate and RT-qPCR with MammaTyper® outperforms qIHC in predicting pCR. Both methods yield improvements to error-prone manual scoring of Ki-67. However, RT-qPCR was significantly more specific
    • …
    corecore