13 research outputs found

    Immune cell counts and signaling in body fluids of cows vaccinated against Clostridium difficile

    No full text
    Abstract Background New treatment options are needed to prevent relapses following failed antibiotic therapies of Clostridium difficile infections (CDI) in humans. The concomitant therapy with an anti-C. difficile IgA containing whey protein concentrate can support the sustainable recovery of CDI patients. For 31 weeks, nine dairy cows were continuously vaccinated with several anti-C. difficile vaccines by certain routes of administration to produce anti-C. difficile IgA enriched milk. The study aimed at finding decisive differences between low responder (LR) and high responder (HR) cows (> 8.0 µg ml−1 total milk C. difficile specific IgA) concerning their immune response to vaccination on cellular and molecular biological levels. Results The results of total and differential cell counting (DCC) in blood and milk and the outcomes of the gene expression analysis of selected immune factors were assessed relating to the usage of two vaccine batches for injection (MucoCD-I batch A and B), marking two immunization (IM) periods, and compared to a control group (Ctr). The MucoCD-I batch A caused short-term leukopenia followed by leukocytosis in the blood of LR and HR. The total somatic cell counts in milk were not altered by the treatment. The DCC revealed that the leukocytes of the treated groups were partly impaired by the treatment. The gene expression analysis exposed cumulative and sustainable differences (p < 0.05) between LR and HR for the genes encoding for lactoferrin, CXCL8, IL1β, IL2, IL6, IL12β, IFNγ, CD4 and CD163. The regulation of the epithelial IgA cell receptor PIGR was not impaired by the IM. In contrast to the vaccination with MucoCD-I batch A, the second IM period with MucoCD-I batch B resulted in mitigation and synchronization of the treated groups’ immune responses. Conclusions The inversely regulated cytokines in the blood and milk cells of the treated groups led to a variously directed, local T cell response resulting in their different production intensities of C. difficile specific IgA in milk

    A Conserved Stem-Loop Structure within ORF5 Is a Frequent Recombination Hotspot for Porcine Reproductive and Respiratory Syndrome Virus 1 (PRRSV-1) with a Particular Modified Live Virus (MLV) Strain

    No full text
    The emergence of recombinant PRRSV strains has been observed for more than a decade. These recombinant viruses are characterized by a genome that contains genetic material from at least two different parental strains. Due to the advanced sequencing techniques and a growing number of data bank entries, the role of PRRSV recombinants has become increasingly important since they are sometimes associated with clinical outbreaks. Chimeric viruses observed more recently are products of PRRSV wild-type and vaccine strains. Here, we report on three PRRSV-1 isolates from geographically distant farms with differing clinical manifestations. A sequencing and recombination analysis revealed that these strains are crossovers between different wild-type strains and the same modified live virus vaccine strain. Interestingly, the recombination breakpoint of all analyzed isolates appears at the beginning of open reading frame 5 (ORF5). RNA structure predictions indicate a conserved stem loop in close proximity to the recombination hotspot, which is a plausible cause of a polymerase template switch during RNA replication. Further research into the mechanisms of the stem loop is needed to help understand the PRRSV recombination process and the role of MLVs as parental strains

    ADAM17 Is an Essential Factor for the Infection of Bovine Cells with Pestiviruses

    No full text
    The entry of BVDV into bovine cells was studied using CRIB cells (cells resistant to infection with bovine viral diarrhea virus [BVDV]) that have evolved from MDBK cells by a spontaneous loss of susceptibility to BVDV. Recently, larger genetic deletions were reported but no correlation of the affected genes and the resistance to BVDV infection could be established. The metalloprotease ADAM17 was reported as an essential attachment factor for the related classical swine fever virus (CSFV). To assess whether ADAM17 might be involved in the resistance of CRIB-1 cells to pestiviruses, we analyzed its expression in CRIB-1 and MDBK cells. While ADAM17 protein was detectable in MBDK cells, it was absent from CRIB-1 cells. No functional full-length ADAM17 mRNA could be detected in CRIB cells and genetic analysis revealed the presence of two defective alleles. Transcomplementation of functional ADAM17 derived from MDBK cells in CRIB-1 cells resulted in a nearly complete reversion of their resistance to pestiviral infection. Our results demonstrate that ADAM17 is a key cellular factor for the pestivirus resistance of CRIB-1 cells and establishes its essential role for a broader range of pestiviruses

    New Emergence of the Novel Pestivirus Linda Virus in a Pig Farm in Carinthia, Austria

    No full text
    Linda virus (LindaV) was first identified in a pig farm in Styria, Austria in 2015 and associated with congenital tremor (CT) type A-II in newborn piglets. Since then, only one more LindaV affected farm was retrospectively discovered 10 km away from the initially affected farm. Here, we report the recent outbreak of a novel LindaV strain in a farrow-to-finish farm in the federal state Carinthia, Austria. No connection between this farm and the previously affected farms could be discovered. The outbreak was characterized by severe CT cases in several litters and high preweaning mortality. A herd visit two months after the onset of clinical symptoms followed by a diagnostic workup revealed the presence of several viremic six-week-old nursery pigs. These animals shed large amounts of virus via feces and saliva, implying an important epidemiological role for within- and between-herd virus transmission. The novel LindaV strain was isolated and genetically characterized. The findings underline a low prevalence of LindaV in the Austrian pig population and highlight the threat when introduced into a pig herd. Furthermore, the results urge the need to better understand the routes of persistence and transmission of this enigmatic pestivirus in the pig population

    The endogenous cardiotonic steroid Marinobufagenin and decline in estimated glomerular filtration rate at follow-up in patients with arterial hypertension.

    No full text
    BackgroundMarinobufagenin (MBG) is an endogenous cardiotonic steroid (CTS) that inhibits the Na+/K+-ATPase. Human MBG is significantly increased in end-stage renal disease and immunization against MBG attenuates cardiovascular fibrosis in a rat model of uremic cardiomyopathy. Mineralocorticoid antagonists (MRA) block MBG binding sites and decrease proteinuria in chronic kidney disease (CKD) patients. We therefore aimed to investigate the association of MBG and albuminuria, as a marker of renal damage, as well as MBG and decline of glomerular filtration rate (GFR).MethodsThe Graz endocrine causes of hypertension (GECOH) study is a single center study of adults routinely referred for screening of endocrine hypertension. Plasma MBG was measured by an enzyme-linked immunoassay, and in a post-hoc analysis, follow-up creatinine levels were obtained. Patients with proteinuria >3.5g/day at baseline were excluded from further evaluation.ResultsWe measured MBG concentrations in 40 hypertensive subjects and excluded one patient due to pre-existing proteinuria. Plasma MBG was significantly correlated with albuminuria (Spearman ρ = .357; p = .028) and proteinuria (ρ = .336; p = .039). In linear regression analysis, the association remained significant after adjustment for age, sex, and BMI (β = .306; p = .036), and for mean systolic blood pressure (β = .352; p = .034). In follow-up analyses (N = 30), MBG was significantly associated with decline in GFR after adjustment for time-to-follow-up (β = -.374; p = .042).ConclusionThe findings suggest that MBG plasma concentrations were associated with albuminuria as well as decline in kidney function. Whether MBG predicts hard renal endpoints warrants further investigations

    Dusty plasma effects in near earth space and interplanetary medium

    No full text
    We review dust and meteoroid fluxes and their dusty plasma effects in the interplanetary medium near Earth orbit and in the Earth’s ionosphere. Aside from in-situ measurements from sounding rockets and spacecraft, experimental data cover radar and optical observations of meteors. Dust plasma interactions in the interplanetary medium are observed by the detection of charged dust particles, by the detection of dust that is accelerated in the solar wind and by the detection of ions and neutrals that are released from the dust. These interactions are not well understood and lack quantitative description. There is still a huge discrepancy in the estimates of meteoroid mass deposition into the atmosphere. The radar meteor observations are of particular interest for determining this number. Dust measurements from spacecraft require a better understanding of the dust impact ionization process,as well as of the dust charging processes. The latter are also important for further studying nanodust trajectories in the solar wind. Moreover understanding of the complex dependencies that cause the variation of nanodust fluxes is still a challenge.540010117 Gästprofessur Mann540010110 Driftsmedel Pellinen-Wannber
    corecore