52 research outputs found

    Perforin and Granzyme B Expressed by Murine Myeloid-Derived Suppressor Cells: A Study on Their Role in Outgrowth of Cancer Cells

    Get PDF
    A wide-range of myeloid-derived suppressor cell (MDSC)-mediated immune suppressive functions has previously been described. Nevertheless, potential novel mechanisms by which MDSCs aid tumor progression are, in all likelihood, still unrecognized. Next to its well-known expression in natural killer cells and cytotoxic T lymphocytes (CTLs), granzyme B (GzmB) expression has been found in different cell types. In an MDSC culture model, we demonstrated perforin and GzmB expression. Furthermore, similar observations were made in MDSCs isolated from tumor-bearing mice. Even in MDSCs from humans, GzmB expression was demonstrated. Of note, B16F10 melanoma cells co-cultured with perforin/GzmB knock out mice (KO) MDSCs displayed a remarkable decrease in invasive potential. B16F10 melanoma cells co-injected with KO MDSCs, displayed a significant slower growth curve compared to tumor cells co-injected with wild type (WT) MDSCs. In vivo absence of perforin/GzmB in MDSCs resulted in a higher number of CD8+ T-cells. Despite this change in favor of CD8+ T-cell infiltration, we observed low interferon-¿ (IFN-¿) and high programmed death-ligand 1 (PD-L1) expression, suggesting that other immunosuppressive mechanisms render these CD8+ T-cells dysfunctional. Taken together, our results suggest that GzmB expression in MDSCs is another means to promote tumor growth and warrants further investigation to unravel the exact underlying mechanism

    Anti-human PD-L1 Nanobody for immuno-PET imaging : validation of a conjugation strategy for clinical translation

    Get PDF
    Immune checkpoints, such as programmed death-ligand 1 (PD-L1), limit T-cell function and tumor cells use this ligand to escape the anti-tumor immune response. Treatments with monoclonal antibodies blocking these checkpoints have shown long-lasting responses, but only in a subset of patients. This study aims to develop a Nanobody (Nb)-based probe in order to assess human PD-L1 (hPD-L1) expression using positron emission tomography imaging, and to compare the influence of two different radiolabeling strategies, since the Nb has a lysine in its complementarity determining region (CDR), which may impact its affinity upon functionalization. The Nb has been conjugated with the NOTA chelator site-specifically via the Sortase-A enzyme or randomly on its lysines. [68Ga]Ga-NOTA-(hPD-L1) Nbs were obtained in >95% radiochemical purity. In vivo tumor targeting studies at 1 h 20 post-injection revealed specific tumor uptake of 1.89 ± 0.40%IA/g for the site-specific conjugate, 1.77 ± 0.29%IA/g for the random conjugate, no nonspecific organ targeting, and excretion via the kidneys and bladder. Both strategies allowed for easily obtaining 68Ga-labeled hPD-L1 Nbs in high yields. The two conjugates were stable and showed excellent in vivo targeting. Moreover, we proved that the random lysine-conjugation is a valid strategy for clinical translation of the hPD-L1 Nb, despite the lysine present in the CDR

    Genome-wide computational analysis reveals cardiomyocyte-specific transcriptional cis-regulatory motifs that enable efficient cardiac gene therapy

    Get PDF
    Gene therapy is a promising emerging therapeutic modality for the treatment of cardiovascular diseases and hereditary diseases that afflict the heart. Hence, there is a need to develop robust cardiac-specific expression modules that allow for stable expression of the gene of interest in cardiomyocytes. We therefore explored a new approach based on a genome-wide bioinformatics strategy that revealed novel cardiac-specific cis-acting regulatory modules (CS-CRMs). These transcriptional modules contained evolutionary-conserved clusters of putative transcription factor binding sites that correspond to a "molecular signature" associated with robust gene expression in the heart. We then validated these CS-CRMs in vivo using an adeno-associated viral vector serotype 9 that drives a reporter gene from a quintessential cardiac-specific a-myosin heavy chain promoter. Most de novo designed CS-CRMs resulted in a > 10-fold increase in cardiac gene - expression. The most robust CRMs enhanced cardiac-specific transcription 70- to 100-fold. Expression was sustained and restricted to cardiomyocytes. We then combined the most potent CS-CRM4 with a synthetic heart and muscle-specific promoter (SPc5-12) and obtained a significant 20-fold increase in cardiac gene expression compared to the cytomegalovirus promoter. This study underscores the potential of rational vector design to improve the robustness of cardiac gene therapy

    Inhibition of Firefly Luciferase by General Anesthetics: Effect on In Vitro and In Vivo Bioluminescence Imaging

    Get PDF
    <div><h3></h3><p>Bioluminescence imaging is routinely performed in anesthetized mice. Often isoflurane anesthesia is used because of its ease of use and fast induction/recovery. However, general anesthetics have been described as important inhibitors of the luciferase enzyme reaction.</p> <h3>Aim</h3><p>To investigate frequently used mouse anesthetics for their direct effect on the luciferase reaction, both in vitro and in vivo.</p> <h3>Materials and Methods</h3><p>isoflurane, sevoflurane, desflurane, ketamine, xylazine, medetomidine, pentobarbital and avertin were tested in vitro on luciferase-expressing intact cells, and for non-volatile anesthetics on intact cells and cell lysates. In vivo, isoflurane was compared to unanesthetized animals and different anesthetics. Differences in maximal photon emission and time-to-peak photon emission were analyzed.</p> <h3>Results</h3><p>All volatile anesthetics showed a clear inhibitory effect on the luciferase activity of 50% at physiological concentrations. Avertin had a stronger inhibitory effect of 80%. For ketamine and xylazine, increased photon emission was observed in intact cells, but this was not present in cell lysate assays, and was most likely due to cell toxicity and increased cell membrane permeability. In vivo, the highest signal intensities were measured in unanesthetized mice and pentobarbital anesthetized mice, followed by avertin. Isoflurane and ketamine/medetomidine anesthetized mice showed the lowest photon emission (40% of unanesthetized), with significantly longer time-to-peak than unanesthetized, pentobarbital or avertin-anesthetized mice. We conclude that, although strong inhibitory effects of anesthetics are present in vitro, their effect on in vivo BLI quantification is mainly due to their hemodynamic effects on mice and only to a lesser extent due to the direct inhibitory effect.</p> </div

    The Next-Generation Immune Checkpoint LAG-3 and Its Therapeutic Potential in Oncology: Third Time’s a Charm

    No full text
    The blockade of immune checkpoints (ICPs), such as cytotoxic T lymphocyte associated protein-4 (CTLA-4) and programmed death-1 (PD-1) and its ligand (PD-L1), has propelled the field of immuno-oncology into its current era. Drugs targeting these ICPs have improved clinical outcome in a number of patients with solid and hematological cancers. Nonetheless, some patients have no benefit from these ICP-blocking therapies. This observation has instigated research into alternative pathways that are responsible for the escape of cancer cells from anti-cancer immune responses. From this research, a number of molecules have emerged as promising therapeutic targets, including lymphocyte activating gene-3 (LAG-3), a next-generation ICP. We will review the current knowledge on the biological activity of LAG-3 and linked herewith its expression on activated immune cells. Moreover, we will discuss the prognostic value of LAG-3 and how LAG-3 expression in tumors can be monitored, which is an aspect that is of utmost importance, as the blockade of LAG-3 is actively pursued in clinical trials

    Early Reassessment of Total Metabolic Tumor Volume on FDG-PET/CT in Advanced Melanoma Patients Treated with Pembrolizumab Predicts Long-Term Outcome

    No full text
    PD-1 Immune checkpoint inhibitors, such as Pembrolizumab, can have a durable beneficial therapeutic effect in patients with advanced melanoma. However, not all patients will benefit equally from these therapies, and (potentially life-threatening) immune-related adverse events may occur. In this study, we investigate the value of early response assessment by FDG-PET/CT as a biomarker for predicting survival. We identified all patients with advanced melanoma who were treated with Pembrolizumab in our medical center and underwent a baseline and at least one follow-up FDG-PET/CT. The total metabolic tumor volume (TMTV) was calculated, and the evolution was compared to survival parameters. A total of 77 patients underwent a baseline and at least one follow-up FDG-PET/CT, 36 patients had follow-up imaging within 2–4 months, and 21 patients an FDG-PET/CT 5–6 months after baseline. When the TMTV evolution was categorized into two subgroups (stable/decrease versus increase), an association was found between stability or decrease in TMTV and better PFS and OS. A similar trend, however non-significant, was observed at 5–6 months. The evolution in TMTV as assessed by FDG-PET/CT 2–4 months after treatment initiation is associated with long-term outcomes in patients with advanced melanoma treated with Pembrolizumab

    The prognostic value of CD206 in solid malignancies : a systematic review and meta-analysis

    No full text
    An increased presence of CD206-expressing tumor associated macrophages in solid cancers was proposed to be associated with worse outcomes in multiple types of malignancies, but contradictory results are published. We performed a reproducible systematic review and meta-analysis to provide increased evidence to confirm or reject this hypothesis following the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement. The Embase, Web of Science, and MEDLINE-databases were systematically searched for eligible manuscripts. A total of 27 papers studying the prognostic impact of CD206 in 14 different tumor types were identified. Meta-analyses showed a significant impact on the overall survival (OS) and disease-free survival (DFS). While no significant differences were revealed in progression-free survival (PFS) and disease-specific survival (DSS), a shift towards negative survival was correlated with increased CD206-expresion. As a result of the different tumor types, large heterogeneity was present between the different tumor types. Subgroup analysis of hepatocellular carcinoma and gastric cancers revealed no heterogeneity, associated with a significant negative impact on OS in both groups. The current systematic review displays the increased presence CD206-expressing macrophages as a significant negative prognostic biomarker for both OS and DFS in patients diagnosed with solid cancers. Because a heterogenous group of tumor types was included in the meta-analysis, the results cannot be generalized. These results can, however, be used to further lead follow-up research to validate the specific prognostic value of CD206 in individual tumor types and therapeutic approaches

    18F-FDG PET/CT based spleen to liver ratio associates with clinical outcome to ipilimumab in patients with metastatic melanoma

    Get PDF
    Background Immune checkpoint blockade such as ipilimumab and anti-PD1 monoclonal antibodies have significantly improved survival in advanced melanoma. Biomarkers are urgently needed as a majority of patients do not respond, despite treatment-related toxicities. We analysed pre-treatment 18F-fluorodeoxyglucose positron emission tomography/computerised tomography (FDG PET/CT) parameters to assess its correlation with patient outcome. Methods This retrospective study evaluated pre-treatment FDG PET/CT scans in a discovery cohort of patients with advanced melanoma treated with ipilimumab or anti-PD1. Pre-treatment scans were assessed for maximum tumoral standardised uptake value (SUVmax), metabolic tumour volume (MTV) and spleen to liver ratio (SLR). Progression-free survival (PFS) and overall survival (OS) were characterised and modelled using univariable and multivariable analyses. Correlation of SLR and OS was validated in an independent cohort. Blood parameters and stored sera of patients from the discovery cohort was analysed to investigate biological correlates with SLR. Results Of the 90 evaluable patients in the discovery cohort: 50 received ipilimumab monotherapy, 20 received anti-PD1 monotherapy, and 20 patients received ipilimumab followed by anti-PD1 upon disease progression. High SLR > 1.1 was associated with poor PFS (median 1 vs 3 months; HR 3.14, p = 0.008) for patients treated with ipilimumab. High SLR was associated with poor OS after ipilimumab (median 1 vs 21 months; HR 5.83, p = 0.0001); as well as poor OS after first line immunotherapy of either ipilimumab or anti-PD1 (median 1 vs 14 months; HR 3.92, p = 0.003). The association of high SLR and poor OS after ipilimumab was validated in an independent cohort of 110 patients (median 2.3 months versus 11.9 months, HR 3.74). SLR was associated with poor OS in a multi-variable model independent of stage, LDH, absolute lymphocyte count and MTV. Conclusions Pre-treatment Spleen to liver ratio (SLR) > 1.1 was associated with poor outcome after ipilimumab in advanced melanoma. This parameter warrants prospective evaluation

    HIV-1 Lentiviral Vector Immunogenicity Is Mediated by Toll-Like Receptor 3 (TLR3) and TLR7â–¿

    No full text
    Lentiviral vectors are promising vaccine vector candidates that have been tested extensively in preclinical models of infectious disease and cancer immunotherapy. They are also used in gene therapy clinical trials both for the ex vivo modification of cells and for direct in vivo injection. It is therefore critical to understand the mechanism(s) by which such vectors might stimulate the immune system. We evaluated the effect of lentiviral vectors on myeloid dendritic cells (DC), the main target of lentiviral transduction following subcutaneous immunization. The activation of DC cultures was independent of the lentiviral pseudotype but dependent on cell entry and reverse transcription. In vivo-transduced DC also displayed a mature phenotype, produced tumor necrosis factor alpha (TNF-α), and stimulated naive CD8+ T cells. The lentiviral activation of DC was Toll-like receptor (TLR) dependent, as it was inhibited in TRIF/MyD88 knockout (TRIF/MyD88−/−) DC. TLR3−/− or TLR7−/− DC were less activated, and reverse transcription was important for the activation of TLR7−/− DC. Moreover, lentivirally transduced DC lacking TLR3 or TLR7 had an impaired capacity to induce antigen-specific CD8+ T-cell responses. In conclusion, we demonstrated TLR-dependent DC activation by lentiviral vectors, explaining their immunogenicity. These data allow the rational development of strategies to manipulate the host's immune response to the transgene
    • …
    corecore