569 research outputs found

    Starburst Galaxies in Cluster-feeding Filaments Unveiled by Spitzer

    Get PDF
    We report the first direct detection with Spitzer of galaxy filaments. Using Spitzer and ancillary optical data, we have discovered two filamentary structures in the outskirts of the cluster Abell 1763. Both filaments point toward Abell 1770, which lies at the same redshift as Abell 1763 (z = 0.23), at a projected distance of ~13 Mpc. The X-ray cluster emission is elongated along the same direction. Most of the far-infrared emission is powered by star formation. According to the optical spectra, only one of the cluster members is classified as an active galactic nucleus. Star formation is clearly enhanced in galaxies along the filaments: the fraction of starburst galaxies in the filaments is more than twice than that in other cluster regions. We speculate that these filaments are feeding the cluster Abell 1763 by the infall of galaxies and galaxy groups. Evidence for one of these groups is provided by the analysis of galaxy kinematics in the central cluster region

    A comparison of the neutron detection efficiency and response characteristics of two pixelated PSD-capable organic scintillator detectors with different photo-detection readout methods

    Full text link
    We characterize the performance of two pixelated neutron detectors: a PMT-based array that utilizes Anger logic for pixel identification and a SiPM-based array that employs individual pixel readout. The SiPM-based array offers improved performance over the previously developed PMT-based detector both in terms of uniformity and neutron detection efficiency. Each detector array uses PSD-capable plastic scintillator as a detection medium. We describe the calibration and neutron efficiency measurement of both detectors using a 137^{137}Cs source for energy calibration and a 252^{252}Cf source for calibration of the neutron response. We find that the intrinsic neutron detection efficiency of the SiPM-based array is (30.2 ± 1.730.2 \ \pm \ 1.7)\%, which is almost twice that of the PMT-based array, which we measure to be (16.9±0.216.9 \pm 0.2)\%

    Point Source Extraction with MOPEX

    Full text link
    MOPEX (MOsaicking and Point source EXtraction) is a package developed at the Spitzer Science Center for astronomical image processing. We report on the point source extraction capabilities of MOPEX. Point source extraction is implemented as a two step process: point source detection and profile fitting. Non-linear matched filtering of input images can be performed optionally to increase the signal-to-noise ratio and improve detection of faint point sources. Point Response Function (PRF) fitting of point sources produces the final point source list which includes the fluxes and improved positions of the point sources, along with other parameters characterizing the fit. Passive and active deblending allows for successful fitting of confused point sources. Aperture photometry can also be computed for every extracted point source for an unlimited number of aperture sizes. PRF is estimated directly from the input images. Implementation of efficient methods of background and noise estimation, and modified Simplex algorithm contribute to the computational efficiency of MOPEX. The package is implemented as a loosely connected set of perl scripts, where each script runs a number of modules written in C/C++. Input parameter setting is done through namelists, ASCII configuration files. We present applications of point source extraction to the mosaic images taken at 24 and 70 micron with the Multiband Imaging Photometer (MIPS) as part of the Spitzer extragalactic First Look Survey and to a Digital Sky Survey image. Completeness and reliability of point source extraction is computed using simulated data.Comment: 20 pages, 13 Postscript figures, accepted for publication in PAS

    High signal-to-noise spectral characterization of the planetary-mass object HD 106906 b

    Get PDF
    We spectroscopically characterize the atmosphere of HD 106906b, a young low-mass companion near the deuterium burning limit. The wide separation from its host star of 7.1" makes it an ideal candidate for high S/N and high-resolution spectroscopy. We aim to derive new constraints on the spectral type, effective temperature, and luminosity of HD106906b and also to provide a high S/N template spectrum for future characterization of extrasolar planets. We obtained 1.1-2.5 μ\mum integral field spectroscopy with the VLT/SINFONI instrument with a spectral resolution of R~2000-4000. New estimates of the parameters of HD 106906b are derived by analyzing spectral features, comparing the extracted spectra to spectral catalogs of other low-mass objects, and fitting with theoretical isochrones. We identify several spectral absorption lines that are consistent with a low mass for HD 106906b. We derive a new spectral type of L1.5±\pm1.0, one subclass earlier than previous estimates. Through comparison with other young low-mass objects, this translates to a luminosity of log(L/LL/L_\odot)=3.65±0.08-3.65\pm0.08 and an effective temperature of Teff=1820±2401820\pm240 K. Our new mass estimates range between M=11.90.8+1.7MJupM=11.9^{+1.7}_{-0.8} M_{\rm Jup} (hot start) and M=14.00.5+0.2MJupM=14.0^{+0.2}_{-0.5} M_{\rm Jup} (cold start). These limits take into account a possibly finite formation time, i.e., HD 106906b is allowed to be 0--3 Myr younger than its host star. We exclude accretion onto HD 106906b at rates M˙>4.8×1010MJup\dot{M}>4.8\times10^{-10} M_{\rm Jup}yr1^{-1} based on the fact that we observe no hydrogen (Paschen-β\beta, Brackett-γ\gamma) emission. This is indicative of little or no circumplanetary gas. With our new observations, HD 106906b is the planetary-mass object with one of the highest S/N spectra yet. We make the spectrum available for future comparison with data from existing and next-generation (e.g., ELT and JWST) spectrographs.Comment: 11 pages, 5 figures. Accepted for publication in Astronomy & Astrophysics. Fully reduced spectra will be made available for download on CD

    Simulated annealing for generalized Skyrme models

    Full text link
    We use a simulated annealing algorithm to find the static field configuration with the lowest energy in a given sector of topological charge for generalized SU(2) Skyrme models. These numerical results suggest that the following conjecture may hold: the symmetries of the soliton solutions of extended Skyrme models are the same as for the Skyrme model. Indeed, this is verified for two effective Lagrangians with terms of order six and order eight in derivatives of the pion fields respectively for topological charges B=1 up to B=4. We also evaluate the energy of these multi-skyrmions using the rational maps ansatz. A comparison with the exact numerical results shows that the reliability of this approximation for extended Skyrme models is almost as good as for the pure Skyrme model. Some details regarding the implementation of the simulated annealing algorithm in one and three spatial dimensions are provided.Comment: 14 pages, 6 figures, added 2 reference

    A Skyrme-type proposal for baryonic matter

    Get PDF
    The Skyrme model is a low-energy effective field theory for QCD, where the baryons emerge as soliton solutions. It is, however, not so easy within the standard Skyrme model to reproduce the almost exact linear growth of the nuclear masses with the baryon number (topological charge), due to the lack of Bogomolny solutions in this model, which has also hindered analytical progress. Here we identify a submodel within the Skyrme-type low energy effective action which does have a Bogomolny bound and exact Bogomolny solutions, and therefore, at least at the classical level, reproduces the nuclear masses by construction. Due to its high symmetry, this model qualitatively reproduces the main features of the liquid droplet model of nuclei. Finally, we discuss under which circumstances the proposed sextic term, which is of an essentially geometric and topological nature, can be expected to give a reasonable description of properties of nuclei.Comment: 11 pages, 2 figures, latex. v3: Extended and revised version, some clarifications added. Some references and 2 figures added. v4: matches published versio
    corecore