31 research outputs found

    Hubungan Empati Petani Dan Keterampilan Sebagai Fasilitator Di Pusat Pelatihan Pertanian Dan Pedesaan Swadaya Jawa Barat

    Get PDF
    Tujuan penelitian adalah menganalisis hubungan empati petani dan keterampilan sebagai fasilitator pembelajaran bagi para petani di Pusat Pelatihan Pertanian Swadaya (P4S). Jenis penelitian adalah survei dengan melibatkan 140 orang petani fasilitator P4S di 17 kabupaten, Provinsi Jawa Barat sebagai responden. Sebanyak 86,43% responden memiliki empati dalam kategori sedang dan 13,57% berada dalam kategori tinggi. Sebanyak 54,29% responden memiliki keterampilan memfasilitasi berada dalam kategori tinggi dan 45,71% dalam kategori sedang. Analisis korelasional menunjukkan bahwa terdapat hubungan positif yang signifikan antara empati dan keterampilan memfasilitasi (p<0,05) dengan derajat hubungan yang lemah (r=0,02)

    Behavior_transition_networks

    No full text
    Raw behavior transition matrices used to calculate escalation rate from approach to head-to-head-interaction

    24hours_fooddep_weight

    No full text
    Dry weight of flies in each treatment and strai

    A Genetic Screen for Olfactory Habituation Mutations in <em>Drosophila</em>: Analysis of Novel <em>Foraging</em> Alleles and an Underlying Neural Circuit

    Get PDF
    <div><p>Habituation is a form of non-associative learning that enables animals to reduce their reaction to repeated harmless stimuli. When exposed to ethanol vapor, <em>Drosophila</em> show an olfactory-mediated startle response characterized by a transient increase in locomotor activity. Upon repeated exposures, this olfactory startle attenuates with the characteristics of habituation. Here we describe the results of a genetic screen to identify olfactory startle habituation (OSH) mutants. One mutation is a transcript specific allele of <em>foraging</em> (<em>for</em>) encoding a cGMP-dependent kinase. We show this allele of <em>for</em> reduces expression of a <em>for-T1</em> isoform expressed in the head and functions normally to inhibit OSH. We localize <em>for-T1</em> function to a limited set of neurons that include olfactory receptor neurons (ORNs) and the mushroom body (MB). Overexpression of <em>for-T1</em> in ORNs inhibits OSH, an effect also seen upon synaptic silencing of the ORNs; <em>for-T1</em> may therefore function in ORNs to decrease synaptic release upon repeated exposure to ethanol vapor. Overall, this work contributes to our understanding of the genes and neurons underlying olfactory habituation in <em>Drosophila</em>.</p> </div

    <i>for</i> alleles enhance olfactory startle habituation.

    No full text
    <p><b>A)</b><i>for<sup>11.247</sup></i> and <i>for<sup>2614</sup></i> show enhanced OSH. A reduction of distance traveled (compared to <i>Ctrl</i>) was seen in both alleles at pulse 2 (p<0.01), 3 and 4 (p<0.001;(nβ€Š=β€Š12). <b>B)</b><i>for<sup>11.247</sup></i> and <i>for<sup>2614</sup></i> have an enhanced HI (indicating more habituation). Significant difference was seen between <i>Ctrl</i> and <i>for<sup>11.247</sup></i> or <i>for<sup>2614</sup></i> (p<0.001; nβ€Š=β€Š12). <b>C)</b> Compared to <i>Ctrl,</i> the precise excision, <i>for<sup>Ξ”11.247</sup>,</i> had a normal HI (p>0.05; nβ€Š=β€Š6). Unless indicated, significance was established by a One-Way-ANOVA with post-hoc Newmans-Keuls tests in all figures (*p<0.05, **p<0.01, ***p<0.001).</p

    OSH mutants isolated from genetic screen.

    No full text
    <p>Initial startle: distance moved per fly during first 30-second startle. Arrows represent direction of the P element. Molecular classes: cell signalling (CS), DNA binding (DB), RNA binding (RB), cell adhesion (CA), cytoskeleton (CY), metabolism (M), proteases (PP), annotated genes unknown molecular function without homology (CG), and those annotated genes with conserved structural domains (CGd). Information current to FlyBase release: FB2012_05, Sept 7th, 2012.</p

    <i>for<sup>11.247</sup> -GAL4</i> flies expressing <i>for-T1</i> have normal olfactory startle habituation.

    No full text
    <p><b>A)</b> Habituation profile of functional rescue of <i>for<sup>11.247</sup>-GAL4</i> by expressing <i>UAS-for-T1</i>. No significant difference in distances travelled were seen between <i>for<sup>11.247</sup>-GAL4</i>;<i>UAS-for-T1/+</i> and either <i>Ctrl</i> or <i>UAS-for-T1/+.</i> At pulse 2, 3 and 4, a significant difference was only seen between <i>for<sup>11.247</sup>–GAL4</i>;<i>UAS-for-T1/+</i> and <i>for<sup>11.247</sup></i> (p<0.01; nβ€Š=β€Š12). <b>B)</b> HI of <i>for</i><sup>11.247</sup> rescue. No significant differences were seen between <i>for<sup>11.247</sup>-GAL4</i>;<i>UAS-for-T1/+</i> and either <i>Ctrl</i> or <i>UAS-for-T1/+</i>, but were observed between <i>for<sup>11.247</sup>-GAL4</i>;<i>UAS-for-T1/+</i> and <i>for<sup>11.247</sup></i> (p<0.01; nβ€Š=β€Š12).</p

    Analysis of neuronal circuitry implicated in olfactory startle habituation.

    No full text
    <p><b>A)</b> Blocking synaptic activity in <i>for<sup>11.247-GAL4</sup></i> neurons reduces OSH. Heterozygous <i>for<sup>11.247</sup>-GAL4</i> flies expressing tetanus toxin (<i>TeTx</i>) had reduced OSH. Significant differences were seen between <i>for<sup>11.247</sup>-GAL4</i><b><i>/</i></b><i>+</i> or <i>UAS-TeTx/+</i> and <i>for<sup>11.247</sup>-GAL4/+;UAS-TeTx/+</i> (p<0.001; nβ€Š=β€Š9). No significant difference was seen in flies expressing inactive <i>TeTx</i> (<i>TeTx<sup>in</sup></i>) with <i>for<sup>11.247</sup>-GAL4</i><b><i>/</i></b><i>+</i> (p>0.05; nβ€Š=β€Š9). <b>B)</b> Synaptic silencing of ORNs inhibits OSH. Expressing <i>UAS-TeTx</i> with <i>Orco-GAL4</i> significantly reduced OSH. Differences were observed between <i>Orco-GAL4/+</i> or <i>UAS-TeTx/+</i> and <i>Orco-GAL4/+;UAS-TeTx/+</i> (p<0.01; nβ€Š=β€Š6). No effect was seen upon expressing <i>UAS-TeTx<sup>in</sup></i> with <i>Orco-GAL4/+</i> (p>0.05; nβ€Š=β€Š9). <b>C)</b><i>for-T1</i> overexpression in ORNs inhibits OSH. Expressing <i>UAS-for-T1</i> with <i>Orco-GAL4</i>, but not with MB driver <i>OK107-GAL4</i>, reduced OSH. Significant differences were observed between <i>Orco-GAL4/+</i> or <i>UAS-for-T1/+</i> and <i>Orco-GAL4/+</i>;<i>UAS-for-T1/+</i> (p<0.001; nβ€Š=β€Š14), but not between controls and <i>OK107-GAL4/+;UAS-for-T1/+</i> (p>0.05; nβ€Š=β€Š8).</p

    Expression pattern of <i>for<sup>11.247</sup>-GAL4</i>.

    No full text
    <p><b>A, B)</b> Expression of <i>for<sup>11.247</sup>-GAL4/+;UAS-GFP/+</i> flies. <b>A)</b> In the antenna, GFP (green) was expressed in the arista (AR) and a sub-population of olfactory receptor neurons (ORNs) in the third antennal segment. <b>B)</b> In the CNS, GFP was expressed in specific glomeruli in the antennal lobe (AL), par intercrebalis (PI) neurons, and weakly in the mushroom body (MB) and lateral cells (LC). <b>C)</b> In <i>for<sup>11.247</sup>-GAL4;UAS-GFP/+</i> flies strong GFP expression was seen in MB, PIs, LC and sub-oesophageal ganglion (SOG), as well as the ventral lateral neurons (LN<sub>v</sub>s), the giant dorsal interneuron (DGI), parts of the antennal lobe (AL) and ellipsoid body (EB). <b>D)</b> Higher magnification of <i>for<sup>11.247</sup>-GAL4;UAS-GFP/+</i> flies showing partial co-localization with a FOR antibody (red) in the MB and LC, but not in DGI.</p

    Molecular characterization of <i>for</i> alleles.

    No full text
    <p><b>A)</b> Schematic of the <i>for</i> transcription unit, with insertion sites of <i>for<sup>11.247</sup></i> and <i>for<sup>2614</sup></i>. Blue bars represent translation start/stop sites, grey bars represent region probed for <i>for-T1/T3</i> and <i>for-T2</i> transcripts. The 3 major <i>for</i> isoforms, collectively called <i>for-T1/T2/T3</i> have a total of nine splice forms, all encoding a common kinase domain at the 3β€² end. FOR-T1 is a 1088 amino acid (aa) protein encoded by <i>for-RA/RH</i>/<i>RI</i>, FOR-T2 is a 894 aa protein encoded by <i>for-RC/RD/RF/RG/RK</i>, and FOR-T3 is a 742 aa protein encoded by <i>for-RB</i>. <b>B)</b> Northern blot of adult fly mRNA using probes specific to <i>for-T1/T3</i> or <i>for-T2</i> transcripts. <b>B, top panel)</b> In the control strain (<i>wBerlin</i>) we detected two bands with the <i>for-T1/T3</i> probe. Based on its size, the upper, more intense, band corresponds to <i>for-T1</i> transcripts, while the lower, less intense band, to the <i>for-T3</i> transcript. Compared to <i>wBerlin</i> and <i>for<sup>Ξ”11.247</sup></i>(a precise excision of <i>for<sup>11.247</sup></i>) a reduced intensity of <i>for-T1</i>, but not <i>for-T3</i> transcripts, was seen in <i>for<sup>11.247</sup></i> and <i>for<sup>2614</sup></i>. <b>B, middle panel)</b> Using a <i>for-T2</i> probe we detected no differences in levels of <i>for-T2</i> transcripts in either <i>for<sup>11.247</sup></i> or <i>for<sup>2614</sup></i>. <b>B, bottom panel)</b> A <i>tubulin</i> probe was used to compare total mRNA levels. <b>C)</b> Quantification of Northern Blot showing reduced <i>for-T1,</i> but not <i>for-T2</i> or <i>for-T3,</i> in <i>for<sup>11.247</sup></i> and <i>for<sup>2614</sup></i>. Levels were calculated as a ratio between <i>for</i> and <i>tubulin</i> band intensity. <b>D)</b> Quantification and representative Western blot of extracts from adult heads analyzed with an antibody that recognizes FOR-T1. Compared to controls, we saw a reduction of FOR-T1 in both <i>for<sup>11.247</sup></i> and <i>for<sup>2614</sup></i> (p<0.001; nβ€Š=β€Š3).</p
    corecore