213 research outputs found

    Zoology: Worming into the Origin of Bilaterians

    Get PDF
    Xenacoelomorphs, a group of worms with simple body organization, have been proposed to represent the first offshoot of bilaterians. A new study shows that they might instead belong to the deuterostomes, just as echinoderms and vertebrates

    Single-cell transcriptomics refuels the exploration of spiralian biology

    Get PDF
    Spiralians represent the least studied superclade of bilaterian animals, despite exhibiting the widest diversity of organisms. Although spiralians include iconic organisms, such as octopus, earthworms and clams, a lot remains to be discovered regarding their phylogeny and biology. Here, we review recent attempts to apply single-cell transcriptomics, a new pioneering technology enabling the classification of cell types and the characterisation of their gene expression profiles, to several spiralian taxa. We discuss the methodological challenges and requirements for applying this approach to marine organisms and explore the insights that can be brought by such studies, both from a biomedical and evolutionary perspective. For instance, we show that single-cell sequencing might help solve the riddle of the homology of larval forms across spiralians, but also to better characterise and compare the processes of regeneration across taxa. We highlight the capacity of single-cell to investigate the origin of evolutionary novelties, as the mollusc shell or the cephalopod visual system, but also to interrogate the conservation of the molecular fingerprint of cell types at long evolutionary distances. We hope that single-cell sequencing will open a new window in understanding the biology of spiralians, and help renew the interest for these overlooked but captivating organisms

    Careful with understudied phyla: The case of chaetognath

    Get PDF
    Background: A recent study by Barthélémy et al. described a set of ribosomal protein (RP) genes extracted from a collection of expressed sequence tags (ESTs) of the chaetognath (arrow worm) Spadella cephaloptera. Three main conclusions were drawn in this paper. First, the authors stated that RP genes present paralogous copies, which have arisen through allopolyploidization. Second, they reported two alternate nucleotide stretches conserved within the 5' untranslated regions (UTR) of multiple ribosomal cDNAs and they suggested that these motifs are involved in the differential transcriptional regulation of paralogous RP genes. Third, they claimed that the phylogenetic position of chaetognaths could not be accurately inferred from a RP dataset because of the persistence of two problems: a long branch attraction (LBA) artefact and a compositional bias. / Results: We reconsider here the results described in Barthélémy et al. and question the evidence on which they are based. We find that their evidence for paralogous copies relies on faulty PCR experiments since they attempted to amplify DNA fragments absent from the genomic template. Our PCR experiments proved that the conserved motifs in 5'UTRs that they targeted in their amplifications are added post-transcriptionally by a trans-splicing mechanism. Then, we showed that the lack of phylogenetic resolution observed by these authors is due to limited taxon sampling and not to LBA or to compositional bias. A ribosomal protein dataset thus fully supports the position of chaetognaths as sister group of all other protostomes. This reinterpretation demonstrates that the statements of Barthélémy et al. should be taken with caution because they rely on inaccurate evidence. / Conclusion: The genomic study of an unconventional model organism is a meaningful approach to understand the evolution of animals. However, the previous study came to incorrect conclusions on the basis of experiments that omitted validation procedures

    High Level of Structural Polymorphism Driven by Mobile Elements in the Hox Genomic Region of the Chaetognath Spadella cephaloptera

    Get PDF
    Little is known about the relationships between genome polymorphism, mobile element dynamics, and population size among animal populations. The chaetognath species Spadella cephaloptera offers a unique perspective to examine this issue because they display a high level of genetic polymorphism at the population level. Here, we have investigated in detail the extent of nucleotide and structural polymorphism in a region harboring Hox1 and several coding genes and presumptive functional elements. Sequencing of several bacterial artificial chromosome inserts representative of this nuclear region uncovered a high level of structural heterogeneity, which is mainly caused by the polymorphic insertion of a diversity of genetic mobile elements. By anchoring this variation through individual genotyping, we demonstrated that sequence diversity could be attributed to the allelic pool of a single population, which was confirmed by detection of extensive recombination within the genomic region studied. The high average level of nucleotide heterozygosity provides clues of selection in both coding and noncoding domains. This pattern stresses how selective processes remarkably cope with intense sequence turnover due to substitutions, mobile element insertions, and recombination to preserve the integrity of functional landscape. These findings suggest that genome polymorphism could provide pivotal information for future functional annotation of genomes

    High Level of Structural Polymorphism Driven by Mobile Elements in the Hox Genomic Region of the Chaetognath Spadella cephaloptera

    Get PDF
    Little is known about the relationships between genome polymorphism, mobile element dynamics, and population size among animal populations. The chaetognath species Spadella cephaloptera offers a unique perspective to examine this issue because they display a high level of genetic polymorphism at the population level. Here, we have investigated in detail the extent of nucleotide and structural polymorphism in a region harboring Hox1 and several coding genes and presumptive functional elements. Sequencing of several bacterial artificial chromosome inserts representative of this nuclear region uncovered a high level of structural heterogeneity, which is mainly caused by the polymorphic insertion of a diversity of genetic mobile elements. By anchoring this variation through individual genotyping, we demonstrated that sequence diversity could be attributed to the allelic pool of a single population, which was confirmed by detection of extensive recombination within the genomic region studied. The high average level of nucleotide heterozygosity provides clues of selection in both coding and noncoding domains. This pattern stresses how selective processes remarkably cope with intense sequence turnover due to substitutions, mobile element insertions, and recombination to preserve the integrity of functional landscape. These findings suggest that genome polymorphism could provide pivotal information for future functional annotation of genomes

    Electronique du diagnostique SPRED

    Get PDF

    Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution

    Get PDF
    Background: The functional consequences of whole genome duplications in vertebrate evolution are not fully understood. It remains unclear, for instance, why paralogues were retained in some gene families but extensively lost in others. Cdx homeobox genes encode conserved transcription factors controlling posterior development across diverse bilaterians. These genes are part of the ParaHox gene cluster. Multiple Cdx copies were retained after genome duplication, raising questions about how functional divergence, overlap, and redundancy respectively contributed to their retention and evolutionary fate. / Results: We examined the degree of regulatory and functional overlap between the three vertebrate Cdx genes using single and triple morpholino knock-down in Xenopus tropicalis followed by RNA-seq. We found that one paralogue, Cdx4, has a much stronger effect on gene expression than the others, including a strong regulatory effect on FGF and Wnt genes. Functional annotation revealed distinct and overlapping roles and subtly different temporal windows of action for each gene. The data also reveal a colinear-like effect of Cdx genes on Hox genes, with repression of Hox paralogy groups 1 and 2, and activation increasing from Hox group 5 to 11. We also highlight cases in which duplicated genes regulate distinct paralogous targets revealing pathway elaboration after whole genome duplication. / Conclusions: Despite shared core pathways, Cdx paralogues have acquired distinct regulatory roles during development. This implies that the degree of functional overlap between paralogues is relatively low and that gene expression pattern alone should be used with caution when investigating the functional evolution of duplicated genes. We therefore suggest that developmental programmes were extensively rewired after whole genome duplication in the early evolution of vertebrates

    The origin and diversification of pteropods precede past perturbations in the Earth’s carbon cycle

    Get PDF
    Open AccessPteropods are a group of planktonic gastropods that are widely regarded as biological indicators for assessing the impacts of ocean acidification. Their aragonitic shells are highly sensitive to acute changes in ocean chemistry. However, to gain insight into their potential to adapt to current climate change, we need to accurately reconstruct their evolutionary history and assess their responses to past changes in the Earth’s carbon cycle. Here, we resolve the phylogeny and timing of pteropod evolution with a phylogenomic dataset (2,654 genes) incorporating new data for 21 pteropod species and revised fossil evidence. In agreement with traditional taxonomy, we recovered molecular support for a division between “sea butterflies” (Thecosomata; mucus-web feeders) and “sea angels” (Gymnosomata; active predators). Molecular dating demonstrated that these two lineages diverged in the early Cretaceous, and that all main pteropod clades, including shelled, partially-shelled, and unshelled groups, diverged in the mid- to late Cretaceous. Hence, these clades originated prior to and subsequently survived major global change events, including the Paleocene–Eocene Thermal Maximum (PETM), the closest analog to modern-day ocean acidification and warming. Our findings indicate that planktonic aragonitic calcifiers have shown resilience to perturbations in the Earth’s carbon cycle over evolutionary timescales.Copyright © 2020 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY)

    New genes from old: asymmetric divergence of gene duplicates and the evolution of development

    Get PDF
    Gene duplications and gene losses have been frequent events in the evolution of animal genomes, with the balance between these two dynamic processes contributing to major differences in gene number between species. After gene duplication, it is common for both daughter genes to accumulate sequence change at approximately equal rates. In some cases, however, the accumulation of sequence change is highly uneven with one copy radically diverging from its paralogue. Such ‘asymmetric evolution’ seems commoner after tandem gene duplication than after whole-genome duplication, and can generate substantially novel genes. We describe examples of asymmetric evolution in duplicated homeobox genes of moths, molluscs and mammals, in each case generating new homeobox genes that were recruited to novel developmental roles. The prevalence of asymmetric divergence of gene duplicates has been underappreciated, in part, because the origin of highly divergent genes can be difficult to resolve using standard phylogenetic methods. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’.</jats:p

    Le guide de bonnes pratiques : un outil prometteur pour la mise en œuvre des droits humains dans les législations cantonales

    Get PDF
    Le droit international s’adresse parfois aux législateurs cantonaux et exige d’eux qu’ils prennent des mesures législatives, par exemple pour mettre en œuvre des obligations découlant de la protection des droits humains. En novembre dernier, le Comité des droits économiques, sociaux et culturels (DESC) des Nations unies a rendu publiques ses recommandations à la Suisse suite à son examen. Le Comité encourage la Suisse à renforcer les mécanismes de coordination entre la Confédération et les cantons afin d’assurer la pleine mise en œuvre des droits humains dans le système fédéral. Quel est le rôle des législateurs cantonaux et comment est-ce que la société civile peut-elle mobiliser le droit international en matière des droits humains dans les processus législatifs cantonaux ? Ce rapport a été produit à la suite d’un webinaire organisé par l’équipe du projet « Bypassing the Nation State? How Swiss Cantonal Parliaments Deal with International Obligations » (International Law and Subnational Parliaments, ILSP) de l’Université de Lausanne le 4 juin 2020 (www.unil.ch/ilsp #ilspUNIL). Ce rapport résume les points marquants de la discussion et souligne la recommandation de créer un guide de bonnes pratiques sur la mise en œuvre de certains aspects du Pacte international relatif aux droits économiques, sociaux et culturels (Pacte ONU I)
    corecore