90 research outputs found

    Numerical Evaluation of Subsurface Soil Water Evaporation Derived From Sensible Heat Balance

    Get PDF
    A recently introduced measurement approach allows in situ determination of subsurface soil water evaporation by means of heat-pulse probes (HPP). The latent heat component of subsurface evaporation is estimated from the residual of the sensible heat balance. This heat balance method requires measurement of vertical soil temperature and estimates of thermal properties for soil water evaporation determination. Our objective was to employ numerically simulated thermal and hydraulic processes using constant or diurnally cycled surface boundary conditions to evaluate and understand this technique. Three observation grid spacings, namely, 6 mm (tri-needle HPP), 3 mm (penta-needle HPP) and 1 mm, along with three soil textures (sand, silt, and silty clay) were used to test the heat balance method. The comparison of heat balance–based evaporation rate estimates with an independent soil profile water balance revealed substantial errors when thermal conductivity was averaged spatially across the evaporation front. Since the conduction component of heat flux is the dominant process at the evaporation front, the estimation of evaporation rate was significantly improved using depth-dependent instead of a space-averaged . A near-surface “undetectable zone” exists, where the heat balance calculation is irreconcilable, resulting in underestimation of total subsurface evaporation. The method performs better for medium- and coarse-textured soils than for fine-textured soils, where portions of the drying front may be maintained longer within the undetectable zone. Using smaller temperature sensor spacing near the soil surface minimized underestimation from the undetectable zone and improved accuracy of total subsurface evaporation rate estimates

    A Novel Shortwave Infrared Proximal Sensing Approach to Quantify the Water Stability of Soil Aggregates

    Get PDF
    Soil structure and aggregate stability (AS) are critical soil properties affecting water infiltration, root growth, and resistance to soil and wind erosion. Changes in AS may be early indicators of soil degradation, pointing to low organic matter (OM) content, reduced biological activity, or poor nutrient cycling. Hence, efficient and reliable AS measurement techniques are essential for detection, management, and remediation of degraded soil resources. Here we quantify soil AS by developing a novel proximal sensing technique based on shortwave infrared (SWIR) reflectance measurements. The novel approach is similar to the well-documented high energy moisture characteristic (HEMC) method, which yields a stability ratio (SR) derived from comparison of hydraulic and structural characteristics of slowly- and rapidly-wetted soil samples near-saturation. We rapidly wetted aggregated soil samples (i.e., high energy input) and hypothesized that an AS index can be derived from SWIR surface reflectance spectra due to differences in post-wetting surface roughness that is intimately linked to AS. To test this hypothesis, surface reflectance spectra from a wide range of structured soil textures under both slowly- and rapidly-wetted samples, were measured with a SWIR spectroradiometer (350–2500 nm). The ratio between pre- and post-wetting spectra was determined and compared with the HEMC method’s volume of drainable pore ratio (VDPR). We found a strong correlation (R2 = 0.87) between the VDPR and the SWIR-derived reflectance index (RI) and also between the SR (R2 = 0.90) and the RI for all soils. These results point to the feasibility and appeal of quantifying AS using the newly proposed and more time-efficient proximal sensing method

    Advancing NASA’s AirMOSS P-Band Radar Root Zone Soil Moisture Retrieval Algorithm via Incorporation of Richards’ Equation

    Get PDF
    P-band radar remote sensing applied during the Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission has shown great potential for estimation of root zone soil moisture. When retrieving the soil moisture profile (SMP) from P-band radar observations, a mathematical function describing the vertical moisture distribution is required. Because only a limited number of observations are available, the number of free parameters of the mathematical model must not exceed the number of observed data. For this reason, an empirical quadratic function (second order polynomial) is currently applied in the AirMOSS inversion algorithm to retrieve the SMP. The three free parameters of the polynomial are retrieved for each AirMOSS pixel using three backscatter observations (i.e., one frequency at three polarizations of Horizontal-Horizontal, Vertical-Vertical and Horizontal-Vertical). In this paper, a more realistic, physically-based SMP model containing three free parameters is derived, based on a solution to Richards’ equation for unsaturated flow in soils. Evaluation of the new SMP model based on both numerical simulations and measured data revealed that it exhibits greater flexibility for fitting measured and simulated SMPs than the currently applied polynomial. It is also demonstrated that the new SMP model can be reduced to a second order polynomial at the expense of fitting accuracy

    Multifractal analysis of discretized X-ray CT images for the characterization of soil macropore structures

    Get PDF
    A correct statistical model of soil pore structure can be critical for understanding flow and transport processes in soils, and creating synthetic soil pore spaces for hypothetical and model testing, and evaluating similarity of pore spaces of different soils. Advanced visualization techniques such as X-ray computed tomography (CT) offer new opportunities of exploring heterogeneity of soil properties at horizon or aggregate scales. Simple fractal models such as fractional Brownian motion that have been proposed to capture the complex behavior of soil spatial variation at field scale rarely simulate irregularity patterns displayed by spatial series of soil properties. The objective of this work was to use CT data to test the hypothesis that soil pore structure at the horizon scale may be represented by multifractal models. X-ray CT scans of twelve, water-saturated, 20-cm long soil columns with diameters of 7.5 cm were analyzed. A reconstruction algorithm was applied to convert the X-ray CT data into a stack of 1480 grayscale digital images with a voxel resolution of 110 microns and a cross-sectional size of 690 × 690 pixels. The images were binarized and the spatial series of the percentage of void space vs. depth was analyzed to evaluate the applicability of the multifractal model. The series of depth-dependent macroporosity values exhibited a well-defined multifractal structure that was revealed by singularity and Rényi spectra. The long-range dependencies in these series were parameterized by the Hurst exponent. Values of the Hurst exponent close to one were observed indicating the strong persistence in variations of porosity with depth. The multifractal modeling of soil macropore structure can be an efficient method for parameterizing and simulating the vertical spatial heterogeneity of soil pore space

    Modeling Temperature and Moisture Dependent Emissions of Carbon Dioxide and Methane From Drying Dairy Cow Manure

    Get PDF
    Greenhouse gas emissions due to biological degradation processes of animal wastes are significant sources of air pollution from agricultural areas. The major environmental controls on these microbe-induced gas fluxes are temperature and moisture content. The objective of this study was to model the effects of temperature and moisture content on emissions of CO2 and CH4 during the ambient drying process of dairy manure under controlled conditions. Gas emissions were continuously recorded over 15 d with paired fully automated closed dynamic chambers coupled with a Fourier Transformed Infrared gas analyzer. Water content and temperature were measured and monitored with capacitance sensors. In addition, on days 0, 3, 6, 9, 12 and 15, pH, moisture content, dissolved organic carbon and total carbon (TC) were determined. An empirical model derived from the Arrhenius equation confirmed high dependency of carbon emissions on temperature and moisture content. Results indicate that for the investigated dairy manure, 6.83% of TC was lost in the form of CO2 and 0.047% of TC was emitted as CH4. Neglecting the effect of temperature, the moisture contents associated with maximum gas emissions were estimated as 0.75 and 0.79 g*g-1 for CO2 and CH4, respectively

    Effects of Soil Compaction and Organic Carbon Content on Preferential Flow in Loamy Field Soils

    Get PDF
    Abstract: Preferential flow and transport through macropores affect plant water use efficiency and enhance leaching of agrochemicals and the transport of colloids, thereby increasing the risk for contamination of groundwater resources. The effects of soil compaction, expressed in terms of bulk density (BD), and organic carbon (OC) content on preferential flow and transport were investigated using 150 undisturbed soil cores sampled from 15 × 15–m grids on two field sites. Both fields had loamy textures, but one site had significantly higher OC content. Leaching experiments were conducted in each core by applying a constant irrigation rate of 10 mm h−1 with a pulse application of tritium tracer. Five percent tritium mass arrival times and apparent dispersivities were derived from each of the tracer breakthrough curves and correlated with texture, OC content, and BD to assess the spatial distribution of preferential flow and transport across the investigated fields. Soils from both fields showed strong positive correlations between BD and preferential flow. Interestingly, the relationships between BD and tracer transport characteristics were markedly different for the two fields, although the relationship between BD and macroporosity was nearly identical. The difference was likely caused by the higher contents of fines and OC at one of the fields leading to stronger aggregation, smaller matrix permeability, and a more pronounced pipe-like pore system with well-aligned macropores

    Macroporosity of 2-D cross sections of soil columns via X-ray CT: multifractal statistics and long range correlations for assessing 3-D soil pore structure

    Full text link
    Soil pore structure controls important physical and biological processes in the soil-plant-microbial systems where microbial population dynamics, nutrient cycling, diffusion, mass flow and nutrient uptake by roots take place across many orders of magnitude in length scale. Over the last decades, fractal geometry has been proposed to deal with soil pore complexity and fractal techniques have been applied. Simple fractal models such as fractional Brownian motions, that have been proposed to capture the complex behavior of soil spatial variation, often cannot simulate the irregularity patterns displayed by spatial records of soil properties. It has been reported that these spatial records exhibit a behavior close to the so-called multifractal structures. Advanced visualization techniques such as X-ray computed tomography (CT) are required to assess and characterize the multifractal behavior of soil pore space. The objective of this work was to develop the multifractal description of soil porosity values (2-D sectional porosities) as a function of depth with data from binarized 2-D images that were obtained from X-ray CT scans of 12 water-saturated 20 cm-long soil columns with diameters of 7.5 cm. A reconstruction algorithm was applied to convert the X-ray CT data into a stack of 1480 grayscale digital images with a voxel resolution of 110 microns and a cross-sectional size of 690x690 pixels. The series corresponding to the percentage of void space of the sectional binarized images were recorded. These series of depth-dependent macroporosity values exhibited a well defined multifractal structure that was represented by the singularity and the Rényi spectra. We also parameterized the memory, or long range dependencies, in these series using the Hurst exponent and the multifractal model. The distinct behavior of each porosity series may be associated with pore connectivity and furthermore, correlated with hydraulic soil properties. The obtained multifractal spectra were consistent with multinomial multifractal measures where larger concentrations were less diverse but more common than the smaller ones. Therefore, models to assess pore space connectivity should incorporate a multifractal random structure compatible with this multinomial structure and the long range dependences that displayed these porosity series. Parameterization of the memory in depth dependencies of 2-D porosity series yields a useful representation of complex 3-D macropore geometry and topology
    corecore