61 research outputs found
Soluble Triggering Receptor Expressed on Myeloid Cells 1 Is Released in Patients with Stable Chronic Obstructive Pulmonary Disease
Chronic obstructive pulmonary disease (COPD) is increasingly recognized as a systemic disease that is associated with increased serum levels of markers of systemic inflammation. The triggering receptor expressed on myeloid cells 1 (TREM-1) is a recently identified activating receptor on neutrophils, monocytes, and macrophage subsets. TREM-1 expression is upregulated by microbial products such as the toll-like receptor ligand lipoteichoic acid of Gram-positive or lipopolysaccharides of Gram-negative bacteria. In the present study, sera from 12 COPD patients (GOLD stages I–IV, FEV1 51 ± 6%) and 10 healthy individuals were retrospectively analyzed for soluble TREM-1 (sTREM-1) using a newly developed ELISA. In healthy subjects, sTREM-1 levels were low (median 0.25 ng/mL, range 0–5.9 ng/mL). In contrast, levels of sTREM-1 in sera of COPD patients were significantly increased (median 11.68 ng/mL, range 6.2–41.9 ng/mL, P<.05). Furthermore, serum levels of sTREM-1 showed a significant negative correlation with lung function impairment. In summary, serum concentrations of sTREM-1 are increased in patients with COPD. Prospective studies are warranted to evaluate the relevance of sTREM-1 as a potential marker of the disease in patients with COPD
Physical activity specifically evokes release of cell-free DNA from granulocytes thereby affecting liquid biopsy
Physical activity impacts immune homeostasis and leads to rapid and marked increase in cell-free DNA (cfDNA). However, the origin of cfDNA during exercise remains elusive and it is unknown if physical activity could improve or interfere with methylation based liquid biopsy. We analyzed the methylation levels of four validated CpGs representing cfDNA from granulocytes, lymphocytes, monocytes, and non-hematopoietic cells, in healthy individuals in response to exercise, and in patients with hematological malignancies under resting conditions. The analysis revealed that physical activity almost exclusively triggered DNA release from granulocytes, highlighting the relevance as a pre-analytical variable which could compromise diagnostic accuracy
Regulatory T Cells and IL-10 Independently Counterregulate Cytotoxic T Lymphocyte Responses Induced by Transcutaneous Immunization
The imidazoquinoline derivate imiquimod induces inflammatory responses and protection against transplanted tumors when applied to the skin in combination with a cognate peptide epitope (transcutaneous immunization, TCI). Here we investigated the role of regulatory T cells (T(reg)) and the suppressive cytokine IL-10 in restricting TCI-induced cytotoxic T lymphocyte (CTL) responses.TCI was performed with an ointment containing the TLR7 agonist imiquimod and a CTL epitope was applied to the depilated back skin of C57BL/6 mice. Using specific antibodies and FoxP3-diphteria toxin receptor transgenic (DEREG) mice, we interrogated inhibiting factors after TCI: by depleting FoxP3(+) regulatory T cells we found that specific CTL-responses were greatly enhanced. Beyond this, in IL-10 deficient (IL-10(-/-)) mice or after blocking of IL-10 signalling with an IL-10 receptor specific antibody, the TCI induced CTL response is greatly enhanced indicating an important role for this cytokine in TCI. However, by transfer of T(reg) in IL-10(-/-) mice and the use of B cell deficient JHT(-/-) mice, we can exclude T(reg) and B cells as source of IL-10 in the setting of TCI.We identify T(reg) and IL-10 as two important and independently acting suppressors of CTL-responses induced by transcutaneous immunization. Advanced vaccination strategies inhibiting T(reg) function and IL-10 release may lead the development of effective vaccination protocols aiming at the induction of T cell responses suitable for the prophylaxis or treatment of persistent infections or tumors
Optimized dithranol-imiquimod-based transcutaneous immunization enables tumor rejection
Introduction: Transcutaneous immunization (TCI) is a non-invasive vaccination method promoting strong cellular immune responses, crucial for the immunological rejection of cancer. Previously, we reported on the combined application of the TLR7 agonist imiquimod (IMQ) together with the anti-psoriatic drug dithranol as novel TCI platform DIVA (dithranol/IMQ based vaccination). In extension of this work, we further optimized DIVA in terms of drug dose, application pattern and established a new IMQ formulation.
Methods: C57BL/6 mice were treated on the ear skin with dithranol and IMQ-containing ointments together with ovalbumin-derived peptides. T cell responses were determined by flow cytometry and IFN-ɤ ELISpot assay, local skin inflammation was characterized by ear swelling.
Results: Applying the adjuvants on separate skin sites, a reduced number of specific CD8+ T cells with effector function was detectable, indicating that the local concurrence of adjuvants and peptide antigens is required for optimal vaccination. Likewise, changing the order of dithranol and IMQ resulted in an increased skin inflammatory reaction, but lower frequencies of antigen-specific CD8+ T cells indicating that dithranol is essential for superior T cell priming upon DIVA. Dispersing nanocrystalline IMQ in a spreadable formulation (IMI-Sol+) facilitated storage and application rendering comparable immune responses. DIVA applied one or two weeks after the first immunization resulted in a massive increase in antigen-specific T cells and up to a ten-fold increased memory response. Finally, in a prophylactic tumor setting, double but no single DIVA treatment enabled complete control of tumor growth, resulting in full tumor protection.
Discussion: Taken together, the described optimized transcutaneous vaccination method leads to the generation of a strong cellular immune response enabling the effective control of tumor growth and has the potential for clinical development as a novel non-invasive vaccination method for peptide-based cancer vaccines in humans
Quality by design (QbD) approach for a nanoparticulate imiquimod formulation as an investigational medicinal product
The present article exemplifies the application of the concept of quality by design (QbD) for the systematic development of a nanoparticulate imiquimod (IMQ) emulsion gel formulation as an investigational medicinal product (IMP) for evaluation in an academic phase-I/II clinical trial for the treatment of actinic keratosis (AK) against the comparator Aldara (EudraCT: 2015-002203-28). The design of the QbD elements of a quality target product profile (QTPP) enables the identification of the critical quality attributes (CQAs) of the drug product as the content of IMQ, the particle-size distribution, the pH, the rheological properties, the permeation rate and the chemical, physical and microbiological stability. Critical material attributes (CMAs) and critical process parameters (CPPs) are identified by using a risk-based approach in an Ishikawa diagram and in a risk-estimation matrix. In this study, the identified CPPs of the wet media ball-milling process’s milling time and milling speed are evaluated in a central composite design of experiments (DoEs) approach, revealing criticality for both factors for the resulting mean particle size, while only the milling time is significantly affecting the polydispersity. To achieve a mean particle size in the range of 300–400 nm with a minimal PdI, the optimal process conditions are found to be 650 rpm for 135 min. Validating the model reveals a good correlation between the predicted and observed values. Adequate control strategies were implemented for intermediate products as in-process controls (IPCs) and quality control (QC) tests of the identified CQAs. The IPC and QC data from 13 “IMI-Gel” batches manufactured in adherence to good manufacturing practice (GMP) reveal consistent quality with minimal batch-to-batch variability
PLANNING OF HUMAN RESOURCE COMPETENCY DEVELOPMENT IN PT.XYZ WITH TAGUCHI METHOD
The problem of human resources is still a concern within the company to remain competitive in
this globalization world. This shows that the problem of human resources greatly affect the
implementation and success of the company in achieving goals and objectives. The company
demand to obtain the development process and get quality human resources more urgent. And
the development of human resource competence is necessary. This study uses experimental
testing with several parameters of validity and reliability testing. For testing analysis using
Taguchi Method. Based on the Response Table for Signal to Noise Ratios Nominal is best
obtained taguchi test results obtained values obtained from the effect plot for means with the
approach of table of means, then the intellectual competence is needed for the improvement of
HR performance
- …