16 research outputs found

    Simulation of electric field-assisted nanowire growth from aqueous solutions

    Get PDF
    The present work is aimed at investigating the mechanisms of nanowire growth from aqueous solutions through a physical and chemical modeling. Based on this modeling, deriving an optimized process control is intended. The work considers two methods of nanowire growth. The first is the dielectrophoretic nanowire assembly from neutral molecules or metal clusters. Secondly, in the directed electrochemical nanowire assembly metal-containing ions are reduced in an AC electric field in the vicinity of the nanowire tip and afterwards deposited at the nanowire surface. To describe the transport and growth processes, continuum models are employed. Furthermore, it has been necessary to consider electro-kinetic fluid flows to match the experimental observations. The occurring partial differential equations are solved numerically by means of finite element method (FEM). The effect of the process parameters on the nanowire growth are analyzed by comparing experimental results to a parameter study. The evaluation has yielded that an AC electro-osmotic fluid flow has a major influence on the dielectrophoretic nanowire assembly regarding the growth velocity and morphology. In the case of directed electrochemical nanowire assembly, the nanowire morphology can be controlled by the applied AC signal shape. Based on the nanowire growth model, an optimized AC signal has been designed, whose parametrization allows to adjust to the chemical precursor and the desired nanowire diameter.Ziel der vorliegenden Arbeit ist es, mittels physikalischer und chemischer Modelle die Mechanismen des Nanodrahtwachstums aus wässrigen Lösungen zu erforschen und daraus eine optimierte Prozesskontrolle abzuleiten. Dabei werden zwei Verfahren des Nanodrahtwachstums näher betrachtet: Dies sind die dielektrophoretische Assemblierung von neutralen Molekülen oder Metallclustern sowie die gerichtete elektrochemische Nanodrahtabscheidung (engl. directed electrochemical nanowire assembly), bei der metallhaltige Ionen im elektrischen Wechselfeld an der Nanodrahtspitze zunächst reduziert und anschließend als Metallatome abgeschieden werden. Zur Beschreibung der Transport- und Wachstumsprozesse werden Kontinuumsmodelle eingesetzt. Darüber hinaus hat es sich als notwendig erwiesen, elektrokinetische Fluidströmungen zu berücksichtigen, um die experimentellen Beobachtungen zu reproduzieren. Die auftretenden partiellen Differenzialgleichungen werden mittels der Finiten Elemente Methode (FEM) numerisch gelöst. Die Auswirkungen der Prozessparameter auf das Nanodrahtwachstum werden durch den Vergleich von experimentellen Ergebnissen mit Parameterstudien analysiert. Die Auswertung hat ergeben, dass für das dielektrophoretische Wachstum ein durch Wechselfeldelektroosmose (engl. AC electro-osmosis) angetriebener Fluidstrom die Drahtwachstumsgeschwindigkeit und -morphologie maßgeblich beeinflusst. Im Falle der gerichteten elektrochemischen Nanodrahtabscheidung lässt sich die Drahtmorphologie über das angelegte elektrische Wechselsignal steuern. Unter Verwendung des Wachstumsmodells ist ein optimiertes Signal generiert worden, dessen Parametrisierung eine gezielte Anpassung auf den chemischen Ausgangsstoff und den gewünschten Drahtdurchmesser erlaubt

    The Neverending Story of Value Change. Reply to the Reply of Helmut Thome

    Get PDF
    -No abstract availabl

    Evaluating the Therapeutic Success of Keloids Treated With Cryotherapy and Intralesional Corticosteroids Using Noninvasive Objective Measures

    Get PDF
    BACKGROUND Intralesional corticosteroid injections combined with cryotherapy are considered a first-line therapy for keloids. However, objective evaluation on its efficacy is widely missing. OBJECTIVE In this study, the authors evaluated the therapeutic benefits of cryotherapy directly followed by intralesional crystalline triamcinolone acetonide injections using ultrasound and a 3D topographic imaging device. MATERIALS AND METHODS Fifteen patients with keloids were treated with cryotherapy and intralesional injections of triamcinolone acetonide for a total of 4 times at intervals of 4 weeks. Objective assessment was performed at each visit. RESULTS After the last treatment, a significant average reduction of scar volume of 34.3% and an average decrease in scar height of 41.3% as determined by 3D imaging was observed compared with baseline. Ultrasound revealed an average reduction of scar height of 31.7% and an average decrease in tissue penetration depth of 37.8% when compared with baseline measurements. CONCLUSION Objective measurements of relevant keloid characteristics as height, volume, and penetration depth help in quantifying the therapeutic effect. The observed results confirm that intralesional injections of crystalline triamcinolone acetonide combined with cryotherapy represent a powerful approach to reduce scar height and volume significantly

    Simulation of electric field-assisted nanowire growth from aqueous solutions

    Get PDF
    The present work is aimed at investigating the mechanisms of nanowire growth from aqueous solutions through a physical and chemical modeling. Based on this modeling, deriving an optimized process control is intended. The work considers two methods of nanowire growth. The first is the dielectrophoretic nanowire assembly from neutral molecules or metal clusters. Secondly, in the directed electrochemical nanowire assembly metal-containing ions are reduced in an AC electric field in the vicinity of the nanowire tip and afterwards deposited at the nanowire surface. To describe the transport and growth processes, continuum models are employed. Furthermore, it has been necessary to consider electro-kinetic fluid flows to match the experimental observations. The occurring partial differential equations are solved numerically by means of finite element method (FEM). The effect of the process parameters on the nanowire growth are analyzed by comparing experimental results to a parameter study. The evaluation has yielded that an AC electro-osmotic fluid flow has a major influence on the dielectrophoretic nanowire assembly regarding the growth velocity and morphology. In the case of directed electrochemical nanowire assembly, the nanowire morphology can be controlled by the applied AC signal shape. Based on the nanowire growth model, an optimized AC signal has been designed, whose parametrization allows to adjust to the chemical precursor and the desired nanowire diameter.Ziel der vorliegenden Arbeit ist es, mittels physikalischer und chemischer Modelle die Mechanismen des Nanodrahtwachstums aus wässrigen Lösungen zu erforschen und daraus eine optimierte Prozesskontrolle abzuleiten. Dabei werden zwei Verfahren des Nanodrahtwachstums näher betrachtet: Dies sind die dielektrophoretische Assemblierung von neutralen Molekülen oder Metallclustern sowie die gerichtete elektrochemische Nanodrahtabscheidung (engl. directed electrochemical nanowire assembly), bei der metallhaltige Ionen im elektrischen Wechselfeld an der Nanodrahtspitze zunächst reduziert und anschließend als Metallatome abgeschieden werden. Zur Beschreibung der Transport- und Wachstumsprozesse werden Kontinuumsmodelle eingesetzt. Darüber hinaus hat es sich als notwendig erwiesen, elektrokinetische Fluidströmungen zu berücksichtigen, um die experimentellen Beobachtungen zu reproduzieren. Die auftretenden partiellen Differenzialgleichungen werden mittels der Finiten Elemente Methode (FEM) numerisch gelöst. Die Auswirkungen der Prozessparameter auf das Nanodrahtwachstum werden durch den Vergleich von experimentellen Ergebnissen mit Parameterstudien analysiert. Die Auswertung hat ergeben, dass für das dielektrophoretische Wachstum ein durch Wechselfeldelektroosmose (engl. AC electro-osmosis) angetriebener Fluidstrom die Drahtwachstumsgeschwindigkeit und -morphologie maßgeblich beeinflusst. Im Falle der gerichteten elektrochemischen Nanodrahtabscheidung lässt sich die Drahtmorphologie über das angelegte elektrische Wechselsignal steuern. Unter Verwendung des Wachstumsmodells ist ein optimiertes Signal generiert worden, dessen Parametrisierung eine gezielte Anpassung auf den chemischen Ausgangsstoff und den gewünschten Drahtdurchmesser erlaubt

    Multiscale modeling of thermal conductivity of polycrystalline graphene sheets

    Get PDF
    We developed a multiscale approach to explore the effective thermal conductivity of polycrystalline graphene sheets. By performing equilibrium molecular dynamics (EMD) simulations, the grain size effect on the thermal conductivity of ultra-fine grained polycrystalline graphene sheets is investigated. Our results reveal that the ultra-fine grained graphene structures have thermal conductivity one order of magnitude smaller than that of pristine graphene. Based on the information provided by the EMD simulations, we constructed finite element models of polycrystalline graphene sheets to probe the thermal conductivity of samples with larger grain sizes. Using the developed multiscale approach, we also investigated the effects of grain size distribution and thermal conductivity of grains on the effective thermal conductivity of polycrystalline graphene. The proposed multiscale approach on the basis of molecular dynamics and finite element methods could be used to evaluate the effective thermal conductivity of polycrystalline graphene and other 2D structures

    Novel polycrystalline WC-Co based cemented carbides and their properties

    No full text
    Conventional cemented carbides consist of monocrystalline WC grains homogenously distributed within a metallic binder matrix like Co. We developed a new kind of cemented carbide which consists of extra-hard polycrystalline WC particles within a Co based matrix. These cemented carbides offer superior properties with an increased hardness to fracture toughness ratio well above the commonly known cemented carbides. Using nanoscaled WC powder very hard polycrystalline WC particles with a hardness of up to 2900 HV10 were produced and mixed with Co. The new cemented carbides offer the same fracture toughness of conventional monocrystalline hardness with the same particle size but much higher hardness values

    Electrochemical corrosion resistance of Ni and Co bonded near-nano and nanostructured cemented carbides

    No full text
    The advantages of nanostructured cemented carbides are a uniform, homogenous microstructure and superior, high uniform mechanical properties, which makes them the best choice for wear-resistant applications. Wear-resistant applications in the chemical and petroleum industry, besides mechanical properties, require corrosion resistance of the parts. Co as a binder is not an optimal solution due to selective dissolution in an acidic environment. Thus, the development of cemented carbides with alternative binders to increase the corrosion resistance but still retaining mechanical properties is of common interest. Starting mixtures with WC powder, grain growth inhibitors GGIs; VC and Cr3C2, and an identical binder amount of 11-wt.% were prepared. GGIs were added to retain the size of the starting WC powder in the sintered samples. The parameters of the powder metallurgy process were adapted, and samples have been successfully consolidated. A very fine homogeneous microstructure with relatively uniform grain-size distribution and without microstructural defects in the form of carbide agglomerates and abnormal grain growth was achieved for both Ni-bonded and Co-bonded samples. Achieved mechanical properties, Vickers hardness, and Palmqvist toughness, of Ni-bonded near-nanostructured cemented carbides are slightly lower but still comparable to Co-bonded nanostructured cemented carbides. Two samples of each grade were researched by different electrochemical direct current corrosion techniques. The open circuit potential Ecorr, the linear polarisation resistance (LPR), the Tafel extrapolation method, and the electrochemical impedance spectroscopy (EIS) at room temperature in the solution of 3.5% NaCl. From the carried research, it was found that chemical composition of the binder significantly influenced the electrochemical corrosion resistance. Better corrosion resistance was observed for Ni-bonded samples compared to Co-bonded samples. The corrosion rate of Ni-bonded cemented carbides is approximately four times lower compared to Co-bonded cemented carbides
    corecore