12 research outputs found
Epälineaarinen vääristymä laajakaistaisissa analogia-digitaalimuuntimissa
This thesis discusses nonlinearities of analog-to-digital converters (ADCs) and their mitigation using digital signal processing (DSP). Particularly wideband radio receivers are considered here including, e.g., the emerging cognitive radio applications. In this kind of receivers, a single ADC converts a mixture of signals at different frequency bands to digital domain simultaneously. Different signals may have considerably different power levels and hence the overall dynamic range can be very large (even 50–60 dB). Therefore, even the smallest ADC nonlinearities can produce considerable amount of nonlinear distortion, which may cause a strong signal to block significantly weaker signal bands.
One concrete source of nonlinear distortion is waveform clipping due to improper signal conditioning in the input of an ADC. In the thesis, a mathematical model for this phenomenon is derived through Fourier analysis and is then used as a basis for an adaptive interference cancellation (AIC) method. This is a general method for reducing nonlinear distortion and besides clipping it can be used, e.g., to compensate integral nonlinearity (INL) originating from unintentional deviations of the quantization levels. Additionally, an interpolation method is proposed in this thesis to restore clipped waveforms and hence reduce nonlinear distortion.
Through several computer simulations and corresponding laboratory radio signal measurements, the performance of the proposed post-processing methods is illustrated. It can be seen from the results that the methods are able to reduce nonlinear distortion from a weak signal band in a considerable manner when there are strong blocking signals in the neighboring channels. According to the results, the AIC method would be a highly recommendable post-processing technique for modern radio receivers due to its general ability to reduce nonlinear distortion regardless of its source. /Kir10Tässä työssä käsitellään analogia-digitaalimuuntimien (AD-muuntimien) epälineaarisuuksia ja niiden lieventämistä digitaalisen signaalinkäsittelyn (DSP) avulla. Tätä on tarkasteltu erityisesti laajakaistaisten radiovastaanottimien näkökulmasta, joka käsittää mm. tulevat kognitiiviseen radioon liittyvät sovellukset. Tällaisissa vastaanottimissa yksittäinen AD-muunnin muuntaa samanaikaisesti useita eri taajuuskaistoilla olevia signaaleita digitaaliseen muotoon, jolloin yhteenlaskettu dynaaminen alue voi olla hyvin suuri (jopa 50–60 dB). Tämän takia AD-muuntimen pienimmätkin epälineaarisuudet voivat aiheuttaa huomattavasti epälineaarista vääristymää, minkä vuoksi voimakas signaali saattaa häiriöllään peittää muilla taajuuskaistoilla olevia selkeästi heikompia signaaleja.
Eräs konkreettinen epälineaarisen vääristymän aiheuttaja on aaltomuodon leikkaantuminen AD-muuntimen sisäänmenossa jännitealueen ylittymisen vuoksi. Tässä työssä johdetaan matemaattinen malli kyseiselle ilmiölle Fourier-analyysin avulla ja käytetään sitä lähtökohtana adaptiiviselle häiriönpoistomenetelmälle (AIC-menetelmä). Se on yleisluonteinen menetelmä epälineaarisen vääristymän vähentämiseksi, ja leikkaantumisen lisäksi sitä voidaan käyttää esimerkiksi kompensoimaan integraalista epälineaarisuutta (INL), joka on peräisin kvantisointitasojen tahattomista poikkeamista. Lisäksi tässä työssä esitellään interpolointimenetelmä leikkaantuneen aaltomuodon ehostamiseen siten, että epälineaarinen häiriö vähenee.
Esiteltyjen jälkikäsittelymenetelmien suorituskykyä analysoidaan ja havainnollistetaan useilla tietokonesimulaatiolla sekä niitä vastaavilla radiosignaalien laboratoriomittauksilla. Tuloksista voidaan nähdä, että nämä menetelmät kykenevät poistamaan huomattavasti epälineaarista vääristymää heikolta signaalikaistalta silloin, kun naapurikaistoilla on voimakkaita häiriösignaaleja. Tulosten perusteella AIC-menetelmä olisi erittäin suositeltava jälkikäsittelytekniikka moderneihin radiovastaanottimiin, koska se pystyy yleisesti vähentämään epälineaarista vääristymää riippumatta häiriön alkuperästä
Waveforms and End-to-End Efficiency in RF Wireless Power Transfer Using Digital Radio Transmitter
We study radio-frequency (RF) wireless power transfer (WPT) using a digital
radio transmitter for applications where alternative analog transmit circuits
are impractical. An important paramter for assessing the viability of an RF WPT
system is its end-to-end efficiency. In this regard, we present a prototype
test-bed comprising a software-defined radio (SDR) transmitter and an energy
harvesting receiver with a low resistive load; employing an SDR makes our
research meaningful for simultaneous wireless information and power transfer
(SWIPT). We analyze the effect of clipping and non-linear amplification at the
SDR on multisine waveforms. Our experiments suggest that when the DC input
power at the transmitter is constant, high peak-to-average power ratio (PAPR)
multisine are unsuitable for RF WPT over a flat-fading channel, due to their
low average radiated power. The results indicate that the end-to-end efficiency
is positively correlated to the average RF power of the waveform, and that it
reduces with increasing PAPR. Consequently, digital modulations such as
phase-shift keying (PSK) and quadrature amplitude modeulation (QAM) yield
better end-to-end efficiency than multisines. Moreover, the end-to-end
efficiency of PSK and QAM signals is invariant of the transmission bit rate. An
in-depth analysis of the end-to-end efficiency of WPT reveals that the
transmitter efficiency is lower than the receiver efficiency. Furthermore, we
study the impact of a reflecting surface on the end-to-end efficiency of WPT,
and assess the transmission quality of the information signals by evaluating
their error vector magnitude (EVM) for SWIPT. Overall, the experimental
observations of end-to-end efficiency and EVM suggest that, while employing an
SDR transmitter with fixed DC input power, a baseband quadrature PSK signal is
most suitable for SWIPT at large, among PSK and QAM signals.Comment: Accepted for publication in IEEE Transactions on Microwave Theory and
Technique
Cellular Digital Post-Distortion : Signal Processing Methods and RF Measurements
In this paper, we study the feasibility of digital post-distortion (DPoD) based mitigation of transmitter nonlinear distortion in cellular networks. With specific emphasis on downlink, we describe a computationally efficient one-shot method to estimate and mitigate the cascaded multipath channel and transmitter nonlinear distortion effects at terminal receiver, building on demodulation reference symbols (DMRSs). We also describe a DMRS boosting approach to match the envelope characteristics of the DMRS and the actual data-bearing multicarrier symbols such that accurate mitigation is feasible. We provide RF measurement results with a state-of-the-art 28 GHz active antenna array and 256-QAM data modulation, demonstrating larger performance enhancements in received signal error vector magnitude (EVM) compared to existing computationally expensive iterative methods.Peer reviewe
Epälineaarinen vääristymä laajakaistaisissa analogia-digitaalimuuntimissa
This thesis discusses nonlinearities of analog-to-digital converters (ADCs) and their mitigation using digital signal processing (DSP). Particularly wideband radio receivers are considered here including, e.g., the emerging cognitive radio applications. In this kind of receivers, a single ADC converts a mixture of signals at different frequency bands to digital domain simultaneously. Different signals may have considerably different power levels and hence the overall dynamic range can be very large (even 50–60 dB). Therefore, even the smallest ADC nonlinearities can produce considerable amount of nonlinear distortion, which may cause a strong signal to block significantly weaker signal bands.
One concrete source of nonlinear distortion is waveform clipping due to improper signal conditioning in the input of an ADC. In the thesis, a mathematical model for this phenomenon is derived through Fourier analysis and is then used as a basis for an adaptive interference cancellation (AIC) method. This is a general method for reducing nonlinear distortion and besides clipping it can be used, e.g., to compensate integral nonlinearity (INL) originating from unintentional deviations of the quantization levels. Additionally, an interpolation method is proposed in this thesis to restore clipped waveforms and hence reduce nonlinear distortion.
Through several computer simulations and corresponding laboratory radio signal measurements, the performance of the proposed post-processing methods is illustrated. It can be seen from the results that the methods are able to reduce nonlinear distortion from a weak signal band in a considerable manner when there are strong blocking signals in the neighboring channels. According to the results, the AIC method would be a highly recommendable post-processing technique for modern radio receivers due to its general ability to reduce nonlinear distortion regardless of its source. /Kir10Tässä työssä käsitellään analogia-digitaalimuuntimien (AD-muuntimien) epälineaarisuuksia ja niiden lieventämistä digitaalisen signaalinkäsittelyn (DSP) avulla. Tätä on tarkasteltu erityisesti laajakaistaisten radiovastaanottimien näkökulmasta, joka käsittää mm. tulevat kognitiiviseen radioon liittyvät sovellukset. Tällaisissa vastaanottimissa yksittäinen AD-muunnin muuntaa samanaikaisesti useita eri taajuuskaistoilla olevia signaaleita digitaaliseen muotoon, jolloin yhteenlaskettu dynaaminen alue voi olla hyvin suuri (jopa 50–60 dB). Tämän takia AD-muuntimen pienimmätkin epälineaarisuudet voivat aiheuttaa huomattavasti epälineaarista vääristymää, minkä vuoksi voimakas signaali saattaa häiriöllään peittää muilla taajuuskaistoilla olevia selkeästi heikompia signaaleja.
Eräs konkreettinen epälineaarisen vääristymän aiheuttaja on aaltomuodon leikkaantuminen AD-muuntimen sisäänmenossa jännitealueen ylittymisen vuoksi. Tässä työssä johdetaan matemaattinen malli kyseiselle ilmiölle Fourier-analyysin avulla ja käytetään sitä lähtökohtana adaptiiviselle häiriönpoistomenetelmälle (AIC-menetelmä). Se on yleisluonteinen menetelmä epälineaarisen vääristymän vähentämiseksi, ja leikkaantumisen lisäksi sitä voidaan käyttää esimerkiksi kompensoimaan integraalista epälineaarisuutta (INL), joka on peräisin kvantisointitasojen tahattomista poikkeamista. Lisäksi tässä työssä esitellään interpolointimenetelmä leikkaantuneen aaltomuodon ehostamiseen siten, että epälineaarinen häiriö vähenee.
Esiteltyjen jälkikäsittelymenetelmien suorituskykyä analysoidaan ja havainnollistetaan useilla tietokonesimulaatiolla sekä niitä vastaavilla radiosignaalien laboratoriomittauksilla. Tuloksista voidaan nähdä, että nämä menetelmät kykenevät poistamaan huomattavasti epälineaarista vääristymää heikolta signaalikaistalta silloin, kun naapurikaistoilla on voimakkaita häiriösignaaleja. Tulosten perusteella AIC-menetelmä olisi erittäin suositeltava jälkikäsittelytekniikka moderneihin radiovastaanottimiin, koska se pystyy yleisesti vähentämään epälineaarista vääristymää riippumatta häiriön alkuperästä
Iterative Signal Processing for Mitigation of Analog-to-Digital Converter Clipping Distortion in Multiband OFDMA Receivers
In modern wideband communication receivers, the large input-signal dynamics is a fundamental problem. Unintentional signal clipping occurs, if the receiver front-end with the analog-to-digital interface cannot respond to rapidly varying conditions. This paper discusses digital postprocessing compensation of such unintentional clipping in multiband OFDMA receivers. The proposed method iteratively mitigates the clipping distortion by exploiting the symbol decisions. The performance of the proposed method is illustrated with various computer simulations and also verified by concrete laboratory measurements with commercially available analog-to-digital hardware. It is shown that the clipping compensation algorithm implemented in a turbo decoding OFDM receiver is able to remove almost all the clipping distortion even under significant clipping in fading channel circumstances. That is to say, it is possible to nearly recover the receiver performance to the level, which would be achieved in the equivalent nonclipped situation
Near-ground propagation in automotive radar and communication obstructed deployments : Measurements and modelling
Wireless communication and radars will play a crucial role for autonomous vehicles in the nearest future. However, the blockage caused by surrounding cars can degrade communication performance, while automotive radars are never aimed to operate in such conditions. Therefore, in this paper, the authors propose the concept of near-ground propagation, reducing the blockage effect in the road traffic conditions. Specifically, the radio waves may freely propagate under the blocking car's bottom if the antennas are placed as low as possible to the road. Based on the measured and modelled results presented in the paper, it may be claimed that near-ground communication and radar sensing are feasible and may combat even heavily obstructed cases. Nevertheless, some challenges associated with antenna locations were encountered. For example, it was discovered that antenna height at 0.5 m acts less effectively against blockage than at 0.3 m. Next, the 27 dB excess loss at the 0.5 m antenna height in the radar deployment is larger than 17 dB at 0.3 m. In its turn, the higher ground clearance of the blocking vehicle positively affects the near-ground performance. Additionally, the signal propagation at the grazing angle crucially reduces the relevant losses.publishedVersionPeer reviewe
Reference receiver enhanced digital linearization of wideband direct-conversion receivers
This paper proposes two digital receiver (RX) linearization and in-phase/quadrature (I/Q) correction solutions, where an additional reference RX (ref-RX) chain is adopted in order to obtain a more linear observation, in particular, of the strong incoming signals. This is accomplished with reduced RF gain in the ref-RX in order to avoid nonlinear distortion therein. In digital domain, the signal observed by the ref-RX is exploited in linearizing the main RX. This allows combining the sensitivity of the main RX and the linearity of the lower gain ref-RX. The proposed digital processing solutions for implementing the linearization are feedforward interference cancelation and nonlinearity inversion, which are both adapted blindly, without a priori information of the received signals or RX nonlinearity characteristics. The linearization solutions enable flexible suppression of nonlinear distortion stemming from both the RF and analog baseband components of different orders. Especially, wideband multicarrier RXs, where significant demands are set for the RX linearity and I/Q matching, are targeted. Using comprehensive RF measurements and realistic base-station scale components, an RX blocker tolerance improvement of 23 dB and a weak carrier signal-to-noise-and-distortion ratio gain of 19 dB are demonstrated with combined linearization and I/Q correction.acceptedVersionPeer reviewe
Millimeter-Wave Channel Measurements at 28 GHz in Digital Fabrication Facilities
The unprecedented amount of bandwidth available at the millimeter-wave band brings new opportunities for the next-generation factory automation. By supporting these frequencies, the communication technologies may significantly improve the safety and efficiency of manufacturing processes. This paper presents channel measurement results at 28 GHz in a factory environment. The primary channel properties such as path loss, delay, and angular spread are evaluated. Additionally, the distribution of the cross-polarization ratio is shown.acceptedVersionPeer reviewe