489 research outputs found

    The ALG10 locus of Saccharomyces cerevisiae encodes the α-1,2 glucosyltransferase of the endoplasmic reticulum: the terminal glucose of the lipid-linked oligosaccharide is required for efficient N-linked glycosylation

    Get PDF
    The biosynthesis of the lipid-linked oligosaccharide substrate for N-linked protein glycosylation follows a highly conserved pathway at the membrane of the endoplasmic reticulum. Based on the synthetic growth defect in combination with a reduced oligosaccharyltransferase activity (wbp1), we have identified alg10 mutant strains which accumulate lipid-linked Glc2Man9GlcNAc2. We cloned the corresponding wild-type gene and show in a novel in vitro assay that Alg10p is a dolichyl-phosphoglucose-dependent glucosyltransferase which adds the terminal α-1,2 glucose to the lipid-linked Glc2Man9GlcNAc2 oligosaccharide. Hypoglycosylation of secreted proteins in alg10 deletion strains demonstrates that the terminal α-1,2-linked glucose residue is a key element in substrate recognition by the oligosaccharyltransferase. This ensures that primarily completely assembled oligosaccharide is transferred to protei

    An enzyme-based screening system for the rapid assessment of protein N-glycosylation efficiency in yeast

    Get PDF
    N-Glycosylation efficiency is a key parameter when studying components of the protein N-glycosylation pathway, but was recently also recognized as an important factor in the production of glycosylated proteins. We have developed a novel assay to quantify N-glycosylation efficiency of proteins. This assay is based on the secreted activity of yeast acid phosphatase, the proper folding and hence secretion of which is strongly dependent on its N-glycosylation status. The results show that the reporter yields a quantitative measure for protein N-glycosylation in yeast, which is in good agreement with classically used assay based on protein migration patterns on SDS-PAGE. However, the assay is less laborious and is adaptable to high-throughput screening approaches as exemplifie

    ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis

    Get PDF
    N-linked protein glycosylation follows a conserved pathway in eukaryotic cells. The assembly of the lipid-linked core oligosaccharide Glc3Man9GlcNAc2, the substrate for the oligosaccharyltransferase (OST), is catalyzed by different glycosyltransferases located at the membrane of the endoplasmic reticulum (ER). The substrate specificity of the different glycosyltransferase guarantees the ordered assembly of the branched oligosaccharide and ensures that only completely assembled oligosaccharide is transferred to protein. The glycosyltransferases involved in this pathway are highly specific, catalyzing the addition of one single hexose unit to the lipid-linked oligosaccharide (LLO). Here, we show that the dolichylphosphomannose-dependent ALG9 mannosyltransferase is the exception from this rule and is required for the addition of two different α-1,2-linked mannose residues to the LLO. This report completes the list of lumen-oriented glycosyltransferases required for the assembly of the LL

    Molecular basis of carbohydrate-deficient glycoprotein syndromes type I with normal phosphomannomutase activity

    Get PDF
    AbstractCarbohydrate deficient glycoprotein syndromes (CDGS) are inherited disorders in glycosylation. Isoelectric focusing of serum transferrin is used as a biochemical indicator of CDGS; however, this technique cannot diagnose the molecular defect. Even though phosphomannomutase (PMM) deficiency accounts for the great majority of known CDGS cases (CDGS type Ia), newly discovered cases have significantly different clinical presentations than the PMM-deficient patients. These differences arise from other defects affecting the biosynthesis of N-linked oligosaccharides in the endoplasmic reticulum and in the Golgi compartment. The most notable is the loss of phosphomannose isomerase (PMI) (CDGS type Ib). It causes severe hypoglycemia, protein-losing enteropathy, vomiting, diarrhea, and congenital hepatic fibrosis. In contrast to PMM-deficiency, there is no developmental delay nor neuropathy. Most symptoms in the PMI-deficient patients can be successfully treated with dietary mannose supplements. Another defect is the lack of glucosylation of the lipid-linked oligosaccharide precursor. The clinical features of this form of CDGS are milder, but similar to, PMM-deficient patients. Yeast genetic and biochemical techniques were critical in unraveling these disorders since many of the defective genes were known in yeast and corresponding mutants were available for complementation. Yeast strains carrying mutations in the homologous genes are likely to provide conclusive identification of the primary defects in novel CDGS types that affect the synthesis and transfer of precursor oligosaccharides

    Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation

    Get PDF
    Abtract: N-linked glycosylation is one of the most abundant modifications of proteins in eukaryotic organisms. In the central reaction of the pathway, oligosaccharyltransferase (OST), a multimeric complex located at the membrane of the endoplasmic reticulum, transfers a preassembled oligosaccharide to selected asparagine residues within the consensus sequence asparagine-X-serine/threonine. Due to the high substrate specificity of OST, alterations in the biosynthesis of the oligosaccharide substrate result in the hypoglycosylation of many different proteins and a multitude of symptoms observed in the family of congenital disorders of glycosylation (CDG) type I. This review covers our knowledge of human OST and describes enzyme composition. The Stt3 subunit of OST harbors the catalytic center of the enzyme, but the function of the other, highly conserved, subunits are less well defined. Some components seem to be involved in the recognition and utilization of glycosylation sites in specific glycoproteins. Indeed, mutations in the subunit paralogs N33/Tusc3 and IAP do not yield the pleiotropic phenotypes typical for CDG type I but specifically result in nonsyndromic mental retardation, suggesting that the oxidoreductase activity of these subunits is required for glycosylation of a subset of proteins essential for brain developmen

    The N-glycosylation defect of cwh8Δ yeast cells causes a distinct defect in sphingolipid biosynthesis

    Get PDF
    CWH8/YGR036c of Saccharomyces cerevisiae has been identified as a dolichylpyrophosphate (Dol-PP) phosphatase that removes a phosphate from the Dol-PP generated by the oligosaccharyltransferase (OST), while it adds N‐glycans to nascent glycoproteins in the endoplasmic reticulum (ER). Lack of CWH8 was proposed to interrupt the so called dolichol (Dol) cycle by trapping Dol in the form of Dol-PP in the ER lumen. Indeed, cwh8D mutants display a severe deficiency in N‐glycosylation. We find that cwh8D mutants have strongly reduced levels of inositolphosphorylceramide (IPC), whereas its derivative, mannosyl-(inositol-P)2-ceramide (M(IP)2C) is not affected. Microsomes of cwh8D contain normal ceramide synthase and IPC synthesis activities. Within a large panel of mutants affecting Dol dependent pathways such as N- or O-glycosylation, or glycosylphosphatidyl inositol (GPI)-anchoring, only the mutants having a deficiency of N-glycan addition show the defect in IPC biosynthesis. By mutating genes required for the addition of N-glycans or by treating cells with tunicamycin (Tm) one can similarly reduce the steady state level of IPC and exactly reproduce the phenotype of cwh8D cells. Some potential mechanisms by which the lack of N-glycans could lead to the sphingolipid abnormality were further explore

    Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiae

    Get PDF
    The Saccharomyces cerevisiae alg3-1 mutant is descilbed as defective in the biosynthesis of dolichol-linked oligosaccharides (Huffaker and Robbins, Proc. Natl. Acad. Sci. USA, 80, 7466-7470, 1983). Man5GlcNAc2-PP-Dol accumulates in alg3 cells and Endo H resistant carbohydrates are transferred to protein by the oligosaccharyltransferase complex. In this study, we describe the cloning of the ALG3 locus by complementation of the temperature sensitive growth defect of the alg3 stt3 double mutant. The isolated ALG3 gene complements both the defect in the biosynthesis of lipidlinked oligosaccharides of the alg3-mutant and the underglycosylation of secretory proteins. The inactivation of the nonessential ALG3 gene results in the accumulation of lipid-linked Man5GlcNAc2 and protein-bound carbohydrates which are completely Endo H resistant. The ALG3 locus encodes a potential ER-transmembrane protein of 458 amino acids (53 kDa) with a C-terminal KKXX-retrieval sequenc

    Regulation of hyphal growth and sporulation of the insect pathogenic fungus Entomophthora thripidum in vitro

    Get PDF
    Entomophthora thripidum is an obligate biotrophic insect pathogenic fungus that grows as protoplasts within the hemocoel of thrips. Prior to penetration through the insect cuticle and spore formation at the insect surface the protoplasts switch to hyphal growth. In vitro, the differentiation to hyphal growth was a prerequisite for the subsequent formation of infectious spores and was detected 10-20 days after inoculation. E. thripidum secreted a factor that autoinduced the differentiation to hyphal growth. The discovery of this activity inducing hyphal growth made possible the reliable production of spores, the infection of host insects and the consecutive re-isolation of the fungus from the infected insect

    Regulation of hyphal growth and sporulation of the insect pathogenic fungus Entomophthora thripidum in vitro

    Get PDF
    Entomophthora thripidum is an obligate biotrophic insect pathogenic fungus that grows as protoplasts within the hemocoel of thrips. Prior to penetration through the insect cuticle and spore formation at the insect surface the protoplasts switch to hyphal growth. In vitro, the differentiation to hyphal growth was a prerequisite for the subsequent formation of infectious spores and was detected 10-20 days after inoculation. E. thripidum secreted a factor that autoinduced the differentiation to hyphal growth. The discovery of this activity inducing hyphal growth made possible the reliable production of spores, the infection of host insects and the consecutive re-isolation of the fungus from the infected insect

    Multiple cotransformations in Coprinus cinereus

    Get PDF
    Plasmids usually integrate ectopically into the genome of the homobasidiomycete Coprinus cinereus in transformations. Often, integration occurs at multiple sites indicating that more than one plasmid copy was incorporated. This feature prompted us to study transformation with mixtures of several different plasmids in several genetic backgrounds. We found multiple cotransformation to be efficient even with four different plasmids. Simultaneous uptake of a second plasmid was between 5-55%, of two additional plasmids between 3-18% and 3% for three additional plasmids. These high frequencies make possible the analysis of interactions between different heterologous genes introduced into the same nucleus
    corecore