Provided by RERO DOC Digital Library **Glycobiology** vol. 15 no. 11 pp. 1156–1163, 2005 doi:10.1093/glycob/cwj002 Advance Access publication on June 29, 2005

ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis

Christian G. Frank² and Markus Aebi¹

Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology Zürich, ETH Hönggerberg, CH-8093 Zürich, Switzerland

Received on May 26, 2005; revised on June 21, 2005; accepted on June 21, 2005

N-linked protein glycosylation follows a conserved pathway in eukaryotic cells. The assembly of the lipid-linked core oligosaccharide Glc₃Man₉GlcNAc₂, the substrate for the oligosaccharyltransferase (OST), is catalyzed by different glycosyltransferases located at the membrane of the endoplasmic reticulum (ER). The substrate specificity of the different glycosyltransferase guarantees the ordered assembly of the branched oligosaccharide and ensures that only completely assembled oligosaccharide is transferred to protein. The glycosyltransferases involved in this pathway are highly specific, catalyzing the addition of one single hexose unit to the lipidlinked oligosaccharide (LLO). Here, we show that the dolichylphosphomannose-dependent ALG9 mannosyltransferase is the exception from this rule and is required for the addition of two different α -1,2-linked mannose residues to the LLO. This report completes the list of lumen-oriented glycosyltransferases required for the assembly of the LLO.

Key words: endoplasmic reticulum/dolichol/*Saccharomyces cerevisiae*

Introduction

N-linked glycosylation in eukaryotic cells is an essential post-translational modification of proteins in the secretory pathway (Kornfeld and Kornfeld, 1985). A key feature is the transfer of the pre-assembled branched oligosaccharide Glc₃Man₉GlcNAc₂. The assembly of Glc₃Man₉GlcNAc₂. on the lipid-carrier dolichylpyrophosphate (PP-Dol) at the membrane of the endoplasmic reticulum (ER) and the initial trimming reactions of the oligosaccharide after transfer to protein are highly conserved processes in eukaryotes (Herscovics and Orlean, 1993; Burda and Aebi, 1999). The N-linked oligosaccharide fulfills different functions in the maturation of the glycoprotein, such as glycoprotein quality control or lectin-mediated sorting in the secretory pathway (Helenius, 2001; Trombetta, 2003; Helenius and Aebi, 2004). Therefore, it is of central importance that only the complete Glc₃Man₉GlcNAc₂ oligosaccharide is transferred

aebi@micro.biol.ethz.ch

to protein, not biosynthetic intermediates or incorrectly assembled structures. This is accomplished primarily by the substrate specificity of the oligosaccharyltransferase (OST) that transfers the oligosaccharide to protein and the individual glycosyltransferases involved in the substrate assembly (Murphy and Spiro, 1981; Burda *et al.*, 1999; Cipollo and Trimble, 2000; Karaoglu *et al.*, 2001).

Lipid-linked oligosaccharide (LLO) biosynthesis starts on the cytoplasmic side of the ER membrane by transfer of GlcNAc-P to dolichylphosphate (P-Dol), followed by the addition of GlcNAc and five mannose residue-yielding Man₅GlcNAc₂-PP-Dol (Figure 1). Nucleotide-activated sugars serve as substrates for these reactions. After Rft1pdependent translocation of the heptasaccharide moiety into the lumen of the ER (Helenius and Aebi, 2002), four more mannoses are added from the lipid-linked donor Man-P-Dol, and the 14mer oligosaccharide is completed by transfer of three glucoses from Glc-P-Dol. Finally, the multi-subunit complex OST recognizes the full-length substrate and transfers it to asparagine residues in the context Asn-X amino acid-Ser/Thr, where X amino acid can be any amino acid except proline (Gavel and Von Heijne, 1990; Knauer and Lehle, 1999; Yan and Lennarz, 1999; Dempski and Imperiali, 2002).

Yeast *alg* (asparagine-linked glycosylation) (Huffaker and Robbins, 1982) mutants have been pivotal for elucidation of the pathway components, as all 10 known genes encoding glycosyltransferases involved in LLO biosynthesis were initially cloned by complementation of corresponding mutations (Burda *et al.*, 1999). *alg* mutant strains are characterized by accumulation of the LLO substrate of the affected glycosyltransferases, suggesting the absence of redundant transferases. However, because of the branched structure of the oligosaccharide, LLO biosynthesis can proceed in some mutant strains, resulting in aberrant oligosaccharide structures that are then transferred to protein (Cipollo *et al.*, 2001; Helenius and Aebi, 2002).

The high degree of conservation of this pathway in eukaryotes has enabled rapid elucidation of the molecular basis of several human diseases caused by deficiencies in the ER glycosylation pathway, known as congenital disorders of glycosylation (CDG) (Aebi and Hennet, 2001; Marquardt and Denecke, 2003). As mentioned above, the understanding of the LLO biosynthetic pathway is not complete. In particular, the mannosyltransferase responsible for the addition of the terminal α -1,2-linked mannose of the C-antenna (residue k in Figure 1B) has not been identified (Burda *et al.*, 1999). On the basis of the current models (Figure 1), it is proposed that Man-P-Dol serves as a donor in this reaction. The known Man-P-Dol-dependent mannosyltransferases of the pathway, Alg3p, Alg9p, and Alg12p, are hydrophobic proteins with multiple predicted transmembrane

¹To whom correspondence should be addressed; e-mail:

²Present address: Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544

Fig. 1. Scheme of lipid-linked oligosaccharide (LLO) biosynthesis at the lumenal side of the endoplasmic reticulum (ER) membrane. Four mannoses and three glucoses are added in a stepwise manner from Man-P-Dol and Glc-P-Dol, respectively. Genes involved in the respective glycosyl-transfer step are indicated atop the arrow. Darker circles indicate mannoses added from GDP-Man on the cytoplasmic side, lighter circles indicate mannoses added on the lumenal side from Man-P-Dol. Inset: linkage map of the Man9GlcNAc2 oligosaccharide. Monosaccharides are labeled with letters in alphabetic order of addition. The A-, B-, and C-arm are indicated by italic letters. Abbreviations used are $\alpha 2$ (α -1,2), $\alpha 3$ (α -1,6), and $\beta 4$ (β -1,4).

domains. They belong to a group of related transferases which includes also enzymes involved in GPI-anchor formation (Oriol *et al.*, 2002). Members of this family without assigned function would be prime candidates for the missing transferase. Yet in *Saccharomyces cerevisiae*, all family members have already a suggested function. Interestingly, no yeast mutant strain accumulating Man₈GlcNAc₂-PP-Dol (residues a–j in Figure 1) has been isolated so far, despite several genetic screens that have been conducted to identify mutants in this pathway (Huffaker and Robbins, 1982; Roos *et al.*, 1994; Burda *et al.*, 1996, 1999; Burda and Aebi, 1998).

The failure to isolate a $Man_8GlcNAc_2$ -PP-Dol-accumulating mutant could be explained by a model in which a mannosyltransferase acting earlier in the pathway also catalyzes addition of the mannose in question.

On the basis of the assumption that there is a high linkage specificity of the glycosyltransferases involved, the Man-P-Dol-dependent mannosyltransferases Alg3p and Alg12p can be ruled out as possible dual-function candidates, as these transferases add an α -1,3- or α -1,6-linked mannose, respectively. In contrast, the ALG9 mannosyltransferase has previously been shown to be required for the addition of the α -1,2-linked seventh mannose which terminates the B-arm (residue i in Figure 1) (Burda et al., 1996; Cipollo and Trimble, 2000). Cells lacking Alg9p accumulate Man₆GlcNAc₂-PP-Dol, but an abnormal Man₇GlcNAc₂ LLO with the acceptor residue (j in Figure 1) for mannose k can be obtained by overexpression of ALG12 in a $\Delta alg9$ strain (Burda *et al.*, 1999). Interestingly, this Man₇GlcNAc₂ LLO lacks both terminal α -1,2-linked mannose residues despite the absence of one single transferase, Alg9p. This implies that either the responsible mannosyltransferase has a strict requirement for presence of the terminal α -1,2 mannose on the B-arm or that this transferase is Alg9p.

We have investigated the hypothesis that mannose k is added by Alg9p. Using an *in vitro* assay for elongation of LLO and by analysis of the effects of Alg9p overexpression, we provided evidence that Alg9p is involved in addition of both the seventh and the ninth mannose to the LLO of *N*-glycan biosynthesis. It is thus the first example of a transferase in this conserved pathway found to add two saccharides.

Results

First, we followed a biochemical approach to test whether Alg9p is required for addition of the ninth mannose to Man₈GlcNAc₂-PP-Dol. This employed an *in vitro* assay for elongation of Man₇GlcNAc₂-PP-Dol to Man₉GlcNAc₂-PP-Dol. We used [³H]mannose-labeled Man₇GlcNAc₂-PP-Dol (residues a–i) isolated from a strain lacking Alg12p (Burda *et al.*, 1999) as the acceptor LLO substrate. Crude membrane extracts isolated from wildtype $\Delta alg9$ or $\Delta alg12$ strains were mixed with LLO substrate in the presence of detergent. Addition of GDP mannose was required to allow formation of Man-P-Dol by dolichol-phosphate-mannose synthase *in vitro*, while UDP-Glc was left out to avoid formation of glucosylated LLOs. Alterations of the radioactive oligosaccharide were then analyzed by HPLC.

Wildtype membranes elongated the input substrate (Figure 2B) by one or two hexose units to species co-migrating with Man₈GlcNAc₂ and Man₉GlcNAc₂, respectively (Figure 2C). In contrast, membranes from $\Delta alg9$ cells elongated Man₇GlcNAc₂-PP-Dol only by one hexose unit (Figure 2D). No elongation of Man₇GlcNAc₂-PP-Dol was observed with $\Delta alg12$ membranes (Figure 2E). This demonstrates that the first elongation was Alg12p dependent and that the second elongation from Man₈GlcNAc₂-PP-Dol to Man₉GlcNAc₂-PP-Dol depended on Alg9p. Like *in vivo*,

Fig. 2. In vitro assay for elongation of Man7GlcNAc2-PP-Dol. HPLC analysis of [³H]mannose-labeled lipid-linked oligosaccharide (LLO) substrate from $\Delta alg12$ yeast cells after incubation with membranes isolated from different yeast strains. (A) Oligosaccharide standard mix from [³H]mannose-labeled yeast LLO. (B) LLO substrate incubated with heat-inactivated (5 min/95°C) wildtype membranes. (C) LLO substrate incubated with wildtype membranes. (D) LLO substrate incubated with $\Delta alg9$ membranes. (E) LLO substrate incubated with $\Delta alg9$ membranes. (E) LLO substrate incubated with $\Delta alg9$ membranes. (E) LLO substrate incubated with $\Delta alg12$ membranes. Peaks co-migrating with standard oligosaccharides and several selected standard oligosaccharides are indicated. M5–M9 refers to Man₅GlcNAc₂–Man₉GlcNAc₂.

also in the *in vitro* assay addition of the α -1,6-linked mannose on the C-arm (residue j) by Alg12p preceded addition of the terminal α -1,2-linked mannose.

To exclude that deletion of ALG9 results in an inhibiting activity which would mask the α -1,2 mannosyltransferase activity, we mixed membranes from wildtype and $\Delta alg9$ cells and looked for substrate elongation. A peak at position of $Man_9GlcNAc_2$ could still be observed (data not shown), which rules out the presence of an inhibiting activity.

To verify that the oligosaccharides generated in the assay had the presumed Man₈GlcNAc₂ or Man₉GlcNAc₂ structures, we collected individual oligosaccharide species, digested them with an α -1,2 specific exo-mannosidase and analyzed them by HPLC(Figure 3). The material from elongation assays with wildtype membranes showed the expected behavior (Figure 3B–D): Man₇GlcNAc₂ shifted upon treatment to a Man₄GlcNAc₂ isomer, while Man₈GlcNAc₂ and Man₉GlcNAc₂ both shifted to the same Man₅GlcNAc₂ isomer, demonstrating that they only differed by a terminal α -1,2-linked mannose.

Digestion of the Man₈GlcNAc₂ peak generated with $\Delta alg9$ membranes produced Man₅GlcNAc₂, demonstrating that only the Alg12p-dependent elongation occurred and not addition of an α -1,2-linked mannose. To confirm that the Man₉GlcNAc₂ species produced in the assay by wild-type membranes was identical to the naturally occurring Man₉GlcNAc₂, we compared it with a Man₉GlcNAc₂ reference oligosaccharide isolated from a $\Delta alg5$ strain. Cells lacking ALG5 cannot produce Glc-P-Dol and therefore accumulate Man₉GlcNAc₂ isomer of the digested assay products co-migrated with the Man₅GlcNAc₂ isomer obtained after exo-mannosidase digestion of Man₉GlcNAc₂ from $\Delta alg5$.

To confirm our results by a genetic approach, we overexpressed ALG9 in wildtype yeast and analyzed resulting changes in the LLO profile. Cells were transformed with a high-copy plasmid containing the ALG9 gene under control of the endogenous promoter. We then analyzed the pulselabeling LLO profile by HPLC (Figure 4) and compared it with LLO profiles of control cells bearing an empty plasmid. Three prominent glycan peaks are usually detected by the HPLC analysis if LLOs of our wildtype cells are labeled by a [³H]mannose pulse: [³H]Man₅GlcNAc₂, [³H]Man₈GlcNAc₂ and the full-length oligosaccharide [³H]Glc₃Man₉GlcNAc₂. Accumulation of Man₅GlcNAc₂-PP-Dol can be explained by the potentially rate-limiting translocation step that precedes elongation, by the Alg3p mannosyltransferase. The full-length precursor likely accumulates because of lack of acceptor peptides or limiting OST activity. We envisioned that Man₈GlcNAc₂-PP-Dol accumulates due to limited mannosyltransferase activity for elongation. In support of this hypothesis, we found that ALG9 overexpression significantly reduces the relative abundance of the Man₈GlcNAc₂ peak compared with the Man₅GlcNAc₂ peak (Figure 4). Quantification of seven independent experiments revealed the Man₈GlcNAc₂/ $Man_5GlcNAc_2$ ratio of 0.71 \pm 0.15 in wildtype cells and 0.24 ± 0.06 in ALG9-overexpressing cells. Interestingly, we did not observe a concomitant increase in the level of the complete Glc₃Man₉GlcNAc₂ product upon ALG9 overexpression. This phenotype has to be expected in a biosynthetic pathway where the flux through the pathway is controlled by the level of the product. Overexpression of biosynthetic enzymes in such a system results in an alteration of relative intermediate concentrations but not in an increase of the product level. Therefore, we concluded that Alg9p can add the ninth mannose in vivo as the bottleneck at the

Fig. 3. Exo- α -1,2-mannosidase digest analysis of elongation assay products. HPLC analysis of peaks isolated from a Man₇GlcNAc₂-PP-Dol elongation assay (as in Figure 2) or of Man₉GlcNAc₂ isolated from a $\Delta alg5$ strain, either mock incubated (–) or digested with α -1,2 specific exo-mannosidase from *T. reesei* (+). (A) Oligosaccharide standard mix of [³H]mannose-labeled lipid-linked oligosaccharide (LLO) from yeast. (B) M7 peak isolated from Man₇GlcNAc₂-PP-Dol input material after hydrolysis. (C) M9 peak isolated from the elongation assay with wildtype membranes (as in Figure 2C). (D) M8 peak isolated from the elongation assay with wildtype membranes (as in Figure 2D). (F) Man₉GlcNAc₂ peak isolated from LLO of [³H]mannose-labeled $\Delta alg5$ yeast.

 $Man_8GlcNAc_2$ to $Man_9GlcNAc_2$ step can be alleviated by *ALG9* overexpression.

Discussion

We provided both biochemical and genetic evidence that Alg9p is a Dol-P-Man-dependent α -1,2 mannosyltransferase with dual function: the enzyme transfers the seventh mannose residue on the B-arm (i) (Burda *et al.*, 1996) as well as the ninth mannose residue on the C-arm (k) to the LLO.

We have recently identified a mutation of the human ALG9 homologue as the cause of a novel type of CDG (CDG-Il; Frank *et al.*, 2004). Analysis of the LLO from the patient cells revealed that both ALG9 substrates Man₆ GlcNAc₂ and Man₈GlcNAc₂ accumulated, together with detectable amounts of full-length Glc₃Man₉GlcNAc₂. In agreement with this observation, expression of human ALG9 cDNAs in yeast mutant strains indicated that the mutated

ALG9 retained residual activity. This shows that the dual role of ALG9 is conserved also in mammals. ALG9 might also be bifunctional in amoebae, as Freeze and co-workers previously isolated a *Dictyostelium* glycosylation mutant accumulating Man₆GlcNAc₂-, Man₈GlcNAc₂-, and Glc₃ Man₉GlcNAc₂-PP-Dol (HL244, Figure 4 in [Freeze *et al.*, 1989]). This mutant was not studied further, but on the basis of our findings most likely the ALG9 locus is affected.

Trypanosomatids lack glucosylated LLOs and transfer unglycosylated oligosaccharides to protein (Parodi, 1993). Depending on the species, the mature LLO is Man₆Glc NAc₂-PP-Dol, Man₇GlcNAc₂-PP-Dol, or Man₉GlcNAc₂-PP-Dol. Interestingly, no Trypanosoma species has been identified so far that transfers Man₈GlcNAc₂ to protein (Bosch *et al.*, 1988). Our model predicts that cells of the Man₆GlcNAc₂-PP-Dol synthesizing species do not have *ALG9* activity, that those producing Man₇GlcNAc₂-PP-Dol have *ALG9* activity but no *ALG12* activity, and that the Man₉GlcNAc₂-PP-Dol-producing cells have both

Fig. 4. Effect of *ALG9* overexpression on the lipid-linked oligosaccharide (LLO) profile of wildtype cells. HPLC analysis of LLO from [³H]mannoselabeled yeast cells transformed with (A) YEp352, empty multicopy plasmid and (B) pALG9, multicopy plasmid carrying *ALG9*. Selected oligosaccharide species are indicated as M5 (Man₅GlcNAc₂), M8 (Man₈GlcNAc₂), and G3M9 (Glc₃Man₉GlcNAc₂).

activities. As the presence of ALG9 is required to form Man₈GlcNAc₂-PP-Dol (as without ALG9 biosynthesis stops at Man₆GlcNAc₂-PP-Dol), ALG9 will always elongate it further to Man₉GlcNAc₂-PP-Dol. This explains why no species with Man₈GlcNAc₂-PP-Dol as the mature LLO has been observed.

Removal of mannose i from protein-linked Man₉Glc NAc₂ by ER mannosidase I (which yields the Man₈Glc NAc₂ isomer B, different from the Man₈GlcNAc₂ isomer C formed during LLO biosynthesis [Camirand *et al.*, 1991; Weng and Spiro, 1996]) has an important function in glycoprotein folding quality control in the ER (Helenius *et al.*, 1997; Helenius and Aebi, 2004). This trimming step is thought to act as a timer for the decision on whether a glycoprotein may be exported to distal compartments or if it has to be degraded via ER-associated degradation (Helenius *et al.*, 1997; Jakob *et al.*, 1998). It is therefore important that this Man₈GlcNAc₂ isomer B only arises from trimming of protein-bound Man₉GlcNAc₂ and is not formed during LLO biosynthesis and is transferred to protein. How is this achieved?

The specificities of the responsible glycosyltransferases ensure that the sequence of monosaccharide additions is following a sequential order: after translocation of Man₅GlcNAc₂-PP-Dol into the lumen (Helenius *et al.*, 2002), the B-arm (mannose h and i) is synthesized followed by the assembly of the C-arm (mannoses j and k). The oligosaccharide is completed with the triglucosyl cap on the A-arm (glucoses l–n). Interestingly, all the three branches of the mature Glc₃Man₉GlcNAc₂ oligosaccharide precursor terminate in α -1,2-linked sugars. This suggests that capping with an α -1,2-linked monosaccharide signals completion of a branch.

Formation of the Man₈GlcNAc₂ isomer B during LLO biosynthesis is prevented by the substrate specificity of the α -1,6 mannosyltransferase Alg12p that adds mannose j to LLO (Burda *et al.*, 1999; Cipollo and Trimble, 2002). This transferase requires an acceptor structure with the complete B-arm for optimal activity (Burda *et al.*, 1999). Thus, substrates for Alg9p with a Man₇GlcNAc₂ structure composed of residues a–h and j are not formed.

Another key factor that ensures that only fully assembled $Glc_3Man_9GlcNAc_2$ oligosaccharide is transferred to protein is the selectivity of the OST for glucosylated LLO (Murphy and Spiro, 1981; Burda and Aebi, 1998; Spiro, 2000; Karaoglu *et al.*, 2001) in combination with the specificity of the Alg6p glucosyltransferase. Alg6p is required for addition of the first glucose (l), the rate-limiting step in LLO glucosylation (Reiss *et al.*, 1996). Analysis of LLO glucosylation in various *alg* mutants indicates that Man₉GlcNAc₂-PP-Dol is the optimal substrate for Alg6p (Verostek *et al.*, 1993; Burda *et al.*, 1999; Cipollo and Trimble, 2000). Thus, capping with α -1,2-linked mannoses by Alg9p serves as a signal for Alg6p for completion of the LLO.

The relaxed specificity of Alg9p toward the mannoseacceptor structure rises an interesting question whether Alg9p can add an α -1,2-linked mannose (at position f) to the Man₃GlcNAc₂-PP-Dol observed in $\Delta alg11$ cells (Cipollo et al., 2001). We have not carried out further studies on the substrate specificity so far. However, some conclusions on limitations of the substrate spectrum can be drawn from previously reported analyses of mutants affected in GPI-anchor biosynthesis. Besides Alg9p, two other members of the Man-P-Dol-dependent α -1,2 mannosyltransferase family, Smp3p (Grimme et al., 2001) and Gpi10p (Canivenc-Gansel et al., 1998; Sutterlin et al., 1998), are known in yeast. Both are involved in GPI-anchor biosynthesis, act on a lumenally oriented substrate, and might have evolved from a common ancestor with Alg9p (Oriol et al., 2002). Overall sequence similarity to Alg9p is low (Gpi10p 20% identical, 36% similar over 616 amino acids; Smp3p 19% identical, 36% similar over 555 amino acids), but they share a similar topology as judged from the hydrophobicity profiles (Kyte-Doolittle hydropathy algorithm). The gpi10-1 mutant is affected in addition of the third mannose to GPI-anchor precursors but has a normal LLO profile (Canivenc-Gansel et al., 1998). As demonstrated by the inviability of SMP3- or GPI10-deletion mutants (Sutterlin et al., 1998), they are not redundant to each other. Assuming SMP3 and GPI10 do not have additional unknown functions indicates that the relaxed LLO substrate specificity of Alg9p does not extend to GPI-anchor intermediates, as it could otherwise compensate for loss of SMP3 or GPI10.

Materials and methods

Yeast strains and media

Standard yeast media and genetic techniques were used (Guthrie and Fink, 1991). Yeast strains used in this study are listed in Table I.

Table I. Yeast strains used in this study

Strain	Genotype	Source
SS328	MATα ade2-101 his3Δ200 lys2-801 ura3-52	Vijayraghavan <i>et al.</i> (1989)
YG414	MATα ade2-101 ura3-52 his3Δ200 lys2-801 Δalg9::kanMX	Burda <i>et al.</i> (1996)
YG840	MATα ade2-101 ura3-52 his3Δ200 lys2–801 Δalg12::kanMX4	Burda et al. (1999)

Plasmids

pALG9 (Jakob *et al.*, 1998) is a derivative of YEp352 (Hill *et al.*, 1986) and contains a 2.5 kbp *Bg*/II-*Kpn*I fragment of yeast genomic DNA encompassing the *ALG9* ORF plus 0.5 kbp upstream sequence in the *Bam*HI-*Kpn*I sites.

HPLC analysis of $[^{3}H]$ -labeled oligosaccharides

HPLC analysis was carried out as described (Zufferey *et al.*, 1995).

Isolation of [³H]Man₇GlcNAc₂-PP-Dol substrate

 $\Delta alg12$ yeast were grown in YPD medium at 30°C to late log phase and 80 OD546 cells pulse labeled for 12 min with 125 μ Ci [³H]mannose (20 Ci/mmol; ICN Pharmaceuticals, Costa Meso, CA) as described previously (Zufferey *et al.*, 1995). Workup of LLO was stopped after the CHCl₃ : CH₃OH : H₂O (10:10:3) (v/v/v) extraction, and the glycolipids were stored at -20°C until use.

[³H]mannose labeling of ALG9-overexpressing cells

Wildtype yeast (SS328) transformed with either pALG9 or YEp352 were grown in 50 mL YPD at 30°C to mid-log phase (OD546 1.0 \pm 0.1) and pulse labeled for 12 min with 25 μ Ci [³H]mannose as described previously (Zufferey *et al.*, 1995). Half of the isolated hydrolyzed oligosaccharides were analyzed by HPLC (see Results).

For the assessment of the overexpression effect, individual peak areas were quantified with the FLO-One software (Packard Biosciences, Meridan, CT), and the ratios of the $Man_8GlcNAc_2$ and $Man_5GlcNAc_2$ peaks (M8/M5) were calculated for each trace.

Preparation of membranes

Yeast strains were grown to mid-log phase in YPD medium at 30°C.

200 OD₅₄₆ cells were harvested and washed once in washing buffer (50 mM HEPES/NaOH pH 7.5, 3 mM MgCl₂). The cells were resuspended in cold lysis buffer (washing buffer supplemented with 1 mM DTT and protease inhibitors: 1 mM PMSF, 2 µg/mL Leupeptin, and 1 µg/mL E-64) and lysed by vortexing for 10 min with glass beads. The liquid was collected by puncturing the tubes with a hot needle and centrifugation at $1000 \times g$ for 1 min. Intact cells, cell debris, and nuclei were removed by centrifugation for 5 min at $1000 \times g$. This supernatant was then centrifuged for 45 min at $50,000 \times g$ to obtain the membrane

pellet. The pellet was resuspended and homogenized in storage buffer (lysis buffer supplemented with 35% [v/v] glycerol). Membranes were shockfreezed in liquid nitrogen and stored at -80° C until use. Protein concentration was determined using the bicinchoninic acid method.

In vitro assay for elongation of $\int [^{3}H]Man_{7}GlcNAc_{2}$ -PP-Dol

Membranes (340 μ g protein) were incubated with 1 mM GDP-Man and 1 mM CTP in 44 mM HEPES/NaOH pH 7.5, 3 mM MgCl₂, 1 mM DTT, 30% (v/v) glycerol in a volume of 20 μ L.

After incubation for 10 min at 25°C, 100 μ L of [³H]Man₇GlcNAc₂-PP-Dol substrate (60,000–80,000 cpm) in 50 mM HEPES/NaOH pH 6.5, 60 mM NaCl, 5.8 mM MgCl₂, 4.8 mM CaCl₂, 4.8 mM MnCl₂, 1 mM DTT, 0.3% (w/v) NP40 was added. The reaction was stopped after incubation at 25°C after 20 min by addition of 800 μ L CHCl₃ : MeOH (1:1) (v/v) and thorough vortexing. The supernatant after centrifugation for 5 min at 9,000 x g/4°C was saved, and the pellet was re-extracted with 800 μ L CHCl₃ : MeOH : H₂O (10:10:3) (v/v/v). Both supernatants were combined, dried under nitrogen, and subjected to mild acid hydrolysis and analyzed by HPLC as described previously (Zufferey *et al.*, 1995).

Oligosaccharide digestion with exo- α *-1,2 mannosidase*

Single peaks from HPLC analysis of assay products or *in vivo* labeling were collected, dried, and resuspended in incubation buffer (100 mM HOAc/NaOAc pH 5.0). The samples were split and incubated with or without 10 μ U *Trichoderma reesei* exo- α -1,2 mannosidase (a gift from R. Contreras, Ghent) for 96 h at 37°C in a volume of 30 μ L. After heat inactivation of the enzyme for 5 min at 95°C, the samples were spin-filtered and analyzed by HPLC as described above. Initial experiments were performed with an exo- α -1,2 mannosidase from *Aspergillus saitoi* (a gift from Dr. T. Butters, Oxford).

Protein sequence alignments

The protein sequences used have the accession numbers NP_014180 (Alg9p), NP_011373 (Gpi10p), NP_014792 (Smp3p), and NP_014350 (Alg11p). Sequences were aligned using the Clustal W algorithm with a BLOSUM scoring matrix.

Acknowledgments

We thank Jonne Helenius and Charles (Skip) Waechter for fruitful discussions, Michael Wacker for helpful suggestions, and the present and former members of the group for general help and discussion. This work was supported by the Swiss National Science Foundation (grant 3100A0-105541 to M.A.).

Abbreviations

ER, endoplasmic reticulum; GlcNAc, *N*-acetylglucosamine; LLO, lipid-linked oligosaccharide; OST, oligosaccharyl-transferase; P-Dol, dolichylphosphate; PP-Dol, dolichylpy-rophosphate.

References

- Aebi, M. and Hennet, T. (2001) Congenital disorders of glycosylation: genetic model systems lead the way. *Trends Cell Biol.*, 11, 136-141.
- Bosch, M., Trombetta, S., Engstrom, U., and Parodi, A.J. (1988) Characterization of dolichol diphosphate oligosaccharide: protein oligosaccharyltransferase and glycoprotein-processing glucosidases occurring in trypanosomatid protozoa. J. Biol. Chem., 263, 17360– 17365.
- Burda, P. and Aebi, M. (1998) The *ALG10* locus of *Saccharomyces* cerevisiae encodes the α -1,2 glucosyltransferase of the endoplasmic reticulum: the terminal glucose of the lipid-linked oligosaccharide is required for efficient N-linked glycosylation. *Glycobiology*, **8**, 455–462.
- Burda, P. and Aebi, M. (1999) The dolichol pathway of N-linked glycosylation. *Biochim. Biophys. Acta*, 1426, 239–257.
- Burda, P., te Heesen, S., Brachat, A., Wach, A., Dusterhoft, A., and Aebi, M. (1996) Stepwise assembly of the lipid-linked oligosaccharide in the endoplasmic reticulum of *Saccharomyces cerevisiae*: identification of the *ALG9* gene encoding a putative mannosyl transferase. *Proc. Natl. Acad. Sci. U. S. A.*, 93, 7160–7165.
- Burda, P., Jakob, C.A., Beinhauer, J., Hegemann, J.H., and Aebi, M. (1999) Ordered assembly of the asymmetrically branched lipid-linked oligosaccharide in the endoplasmic reticulum is ensured by the substrate specificity of the individual glycosyltransferases. *Glycobiology*, 9, 617–625.
- Camirand, A., Heysen, A., Grondin, B., and Herscovics, A. (1991) Glycoprotein biosynthesis in *Saccharomyces cerevisiae*. Isolation and characterization of the gene encoding a specific processing alpha-mannosidase. *J. Biol. Chem.*, **266**, 15120–15127.
- Canivenc-Gansel, E., Imhof, I., Reggiori, F., Burda, P., Conzelmann, A., and Benachour, A. (1998) GPI anchor biosynthesis in yeast: phosphoethanolamine is attached to the alpha(1),4-linked mannose of the complete precursor glycophospholipid. *Glycobiology*, 8, 761–770.
- Cipollo, J.F. and Trimble, R.B. (2000) The accumulation of Man(6)GlcNAc(2)-PP-dolichol in the Saccharomyces cerevisiae Deltaalg9 mutant reveals a regulatory role for the Alg3p alpha 1,3-man middle-arm addition in downstream oligosaccharide-lipid and glycoprotein glycan processing. J. Biol. Chem., 275, 4267–4277.
- Cipollo, J.F. and Trimble, R.B. (2002) Hypoglycosylation in the alg12 Delta yeast mutant destabilizes protease A and causes proteolytic loss of external invertase. *Glycobiology*, **12**, 30G–33G.
- Cipollo, J.F., Trimble, R.B., Chi, J.H., Yan, Q., and Dean, N. (2001) The yeast ALG11 gene specifies addition of the terminal alpha 1,2-Man to the Man(5)GlcNAc(2)-PP-dolichol N-glycosylation intermediate formed on the cytosolic side of the endoplasmic reticulum. J. Biol. Chem., 276, 21828–21840.
- Dempski, R.E. and Imperiali, B. (2002) Oligosaccharyl transferase: gatekeeper to the secretory pathway. *Curr. Opin. Chem. Biol.*, 6, 844–850.
- Frank, C.G., Grubenmann, C.E., Eyaid, W., Berger, E.G., Aebi, M., and Hennet, T. (2004) Identification and functional analysis of a defect in the human ALG9 gene: definition of congenital disorder of glycosylation type IL. Am. J. Hum. Genet., 75, 146–150.
- Freeze, H.H., Willies, L., Hamilton, S., and Koza-Taylor, P. (1989) Two mutants of *Dictyostelium discoideum* that lack a sulfated carbohydrate antigenic determinant synthesize a truncated lipidlinked precursor of N-linked oligosaccharides. *J. Biol. Chem.*, 264, 5653–5659.
- Gavel, Y. and Von Heijne, G. (1990) Sequence difference between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. *Protein Eng.*, **3**, 433–442.
- Grimme, S.J., Westfall, B.A., Wiedman, J.M., Taron, C.H., and Orlean, P. (2001) The essential Smp3 protein is required for addition of the sidebranching fourth mannose during assembly of yeast glycosylphosphatidylinositols. J. Biol. Chem., 276, 27731–27739.
- Guthrie, C. and Fink, G.R. (1991) Guide to Yeast Genetics and Molecular Biology. Academic Press, San Diego, CA.
- Helenius, A. (2001) Quality control in the secretory assembly line. *Philos. Trans. R. Soc. Lond. B Biol. Sci.*, 356, 147–150.

- Helenius, J. and Aebi, M. (2002) Transmembrane movement of dolichol linked carbohydrates during N-glycoprotein biosynthesis in the endoplasmic reticulum. *Semin. Cell Dev. Biol.*, **13**, 171–178.
- Helenius, A. and Aebi, M. (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem., 73, 1019–1049.
- Helenius, A., Trombetta, E.S., Hebert, D.N., and Simons, J.F. (1997) Calnexin, calreticulin and the folding of glycoproteins. *Trends Cell Biol.*, 7, 193–200.
- Helenius, J., Ng, D.T., Marolda, C.L., Walter, P., Valvano, M.A., and Aebi, M. (2002) Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. *Nature*, 415, 447–450.
- Herscovics, A. and Orlean, P. (1993) Glycoprotein biosynthesis in yeast. *FASEB J.*, 7, 540-550.
- Hill, J.E., Myers, A.M., Koerner, T.J., and Tzagoloff, A. (1986) Yeast/ E. coli shuttle vectors with multiple restriction sites. Yeast, 2, 163–168.
- Huffaker, T.C. and Robbins, P.W. (1982) Temperature-sensitive yeast mutants deficient in asparagine-linked glycosylation. J. Biol. Chem., 257, 3203–3210.
- Jakob, C.A., Burda, P., te Heesen, S., Aebi, M., and Roth, J. (1998) Genetic tailoring of N-linked oligosaccharides: role of glucose residues in glycoprotein processing of *Saccharomyces cerevisiae in vivo. Glycobiology*, 8, 155–164.
- Jakob, C.A., Burda, P., Roth, J., and Aebi, M. (1998) Degradation of misfolded ER glycoproteins in *Saccharomyces cerevisiae* is determined by a specific oligosaccharide structure. J. Cell Biol., 142, 1223–1233.
- Karaoglu, D., Kelleher, D.J., and Gilmore, R. (2001) Allosteric regulation provides a molecular mechanism for preferential utilization of the fully assembled dolichol-linked oligosaccharide by the yeast oligosaccharyltransferase. *Biochemistry*, 40, 12193-12206.
- Knauer, R. and Lehle, L. (1999) The oligosaccharyltransferase complex from yeast. *Biochim. Biophys. Acta*, 1426, 259–273.
- Kornfeld, R. and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem., 54, 631–664.
- Marquardt, T. and Denecke, J. (2003) Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies. *Eur. J. Pediatr.*, **162**, 359–379.
- Murphy, L.A. and Spiro, R.G. (1981) Transfer of glucose to oligosaccharide-lipid intermediates by thyroid microsomal enzymes and its relationship to the N-glycosylation of proteins. J. Biol. Chem., 256, 7487–7494.
- Oriol, R., Martinez-Duncker, I., Chantret, I., Mollicone, R., and Codogno, P. (2002) Common origin and evolution of glycosyltransferases using Dol-P-monosaccharides as donor substrate. *Mol. Biol. Evol.*, **19**, 1451–1463.
- Parodi, A.J. (1993) N-glycosylation in trypanosomatid protozoa. Glycobiology, 3, 193–199.
- Reiss, G., te Heesen, S., Zimmerman, J., Robbins, P.W., and Aebi, M. (1996) Isolation of the *ALG6* locus of *Saccharomyces cerevisiae* required for glucosylation in the N-linked glycosylation pathway. *Glycobiology*, 6, 493–498.
- Roos, J., Sternglanz, R., and Lennarz, W.J. (1994) A screen for yeast mutants with defects in the dolichol-mediated pathway for N-glycosylation. *Proc. Natl. Acad. Sci. U. S. A.*, **91**, 1485–1489.
- Spiro, R.G. (2000) Glucose residues as key determinants in the biosynthesis and quality control of glycoproteins with N-linked oligosaccharides. J. Biol. Chem., 275, 35657–35660.
- Sutterlin, C., Escribano, M.V., Gerold, P., Maeda, Y., Mazon, M.J., Kinoshita, T., Schwarz, R.T., and Riezman, H. (1998) Saccharomyces cerevisiae GPI10, the functional homologue of human PIG-B, is required for glycosylphosphatidylinositol-anchor synthesis. *Biochem. J.*, 332 (Pt 1), 153–159.
- te Heesen, S., Lehle, L., Weissmann, A., and Aebi M. (1994) Isolation of the ALG5 locus encoding the UDP-glucose: dolichyl-phosphate glucosyltransferase from *Saccharomyces cerevisiae*. *Eur. J. Biochem.*, 224, 71–79.
- Trombetta, E.S. (2003) The contribution of N-glycans and their processing in the endoplasmic reticulum to glycoprotein biosynthesis. *Glycobiology*, **13**, 77R–91R.
- Verostek, M.F., Atkinson, P.H., and Trimble, R.B. (1993) Glycoprotein biosynthesis in the alg3 Saccharomyces cerevisiae mutant. 1. Role of glucose in the initial glycosylation of invertase in the endoplasmic reticulum. J. Biol. Chem., 268, 12095–12103.

- Vijayraghavan, U., Company, M., and Abelson, J. (1989) Isolation and characterisation of pre-mRNA splicing mutants in *Saccharomyces cerevisiae*. *Genes Dev.*, **3**, 1206–1216.
- Weng, S. and Spiro, R.G. (1996) Evaluation of the early processing routes of N-linked oligosaccharides of glycoproteins through the characterization of Man8GlcNAc2 isomers: evidence that endomannosidase functions in vivo in the absence of a glucosidase blockade. *Glycobiology*, 6, 861–868.
- Yan, Q. and Lennarz, W.J. (1999) Oligosaccharyltransferase: a complex multisubunit enzyme of the endoplasmic reticulum. *Biochem. Biophys. Res. Commun.*, 266, 684–689.
- Zufferey, R., Knauer, R., Burda, P., Stagljar, I., te Heesen, S., Lehle, L., and Aebi, M. (1995) *STT3*, a highly conserved protein required for yeast oligosaccharyl transferase activity *in vivo*. *EMBO J.*, **14**, 4949–4960.