348 research outputs found

    Modification of Nanodiamonds by Xenon Implantation: A Molecular Dynamics Study

    Get PDF
    Xenon implantation into nanodiamonds is studied using molecular dynamics. The nanodiamonds range in size from 2-10 nm and the primary knock-on (PKA) energy extends up to 40 keV. For small nanodiamonds an energy-window effect occurs in which PKA energies of around 6 keV destroy the nanodiamond, while in larger nanodiamonds the radiation cascade is increasingly similar to those in bulk material. Destruction of the small nanodiamonds occurs due to thermal annealing associated with the small size of the particles and the absence of a heat-loss path. Simulations are also performed for a range of impact parameters, and for a series of double-nanodiamond systems in which a heat-loss path is present. The latter show that the thermal shock caused by the impact occurs on the timescale of a few picoseconds. These findings are relevant to ion-beam modification of nanoparticles by noble gases as well as meteoritic studies where implantation is proposed as the mechanism for xenon incorporation in pre-solar nanodiamonds

    Hemispherical-Directional Reflectance (HDRF) of Windblown Snow-Covered Arctic Tundra at Large Solar Zenith Angles

    Get PDF
    Ground-based measurements of the hemispherical-directional reflectance factor (HDRF) of windblown snowcovered Arctic tundra were measured at large solar zenith angles (79◦–85◦) for six sites near the international research base in Ny-Ålesund, Svalbard. Measurements were made with the Gonio RAdiometric Spectrometer System over the viewing angles 0◦–50◦ and the azimuth angles 0◦–360◦, for the wavelength range 400–1700 nm. The HDRF measurements showed good consistency between sites for near-nadir and backward viewing angles, with a relative standard deviation of less than 10% between sites where the snowpack was smooth and the snow depth was greater than 40 cm. The averaged HDRF showed good symmetry with respect to the solar principal plane and exhibited a forward scattering peak that was strongly wavelength dependent, with greater than a factor of 2 increase in the ratio of maximum to minimum HDRF values for all viewing angles over the wavelength range 400– 1300 nm. The angular effects on the HDRF had minimal influence for viewing angles less than 15◦ in the backward viewing direction for the averaged sites and agreed well with another study of snow HDRF for infrared wavelengths, but showed differences of up to 0.24 in the HDRF for visible wavelengths owing to light-absorbing impurities measured in the snowpack. The site that had the largest roughness elements showed the strongest anisotropy in the HDRF, a large reduction in forward scattering, and a strong asymmetry with respect to the solar principal plane

    Preparing potential teachers for the transition from employment to teacher training: an evaluative case study of a Maths Enhancement Course

    Get PDF
    In response to a UK government drive to improve maths teaching in schools, the South West London Maths Enhancement Course (MEC) has been set up though collaboration between three Higher Education institutions (HEIs) to provide an efficient route for non maths graduates in employment to upgrade their subject knowledge and give a smooth transition into teacher training (PGCE). An evaluation of the scheme, measured against Teacher Development Agency (TDA) objectives and success criteria agreed by university staff, involved thematic analysis of focus group discussions and interviews with students and staff during both the MEC and PGCE courses. This has revealed a high level of satisfaction and success related to a number of underlying issues, particularly around student recruitment, curriculum design, peer support and staff collaboration. The model offers an example of practice transferable to a range of programmes aimed at supporting students in the transition between levels and institutions

    Defining graphenic crystallites in disordered carbon: moving beyond the platelet model

    Full text link
    We develop a picture of graphenic crystallites within disordered carbons that goes beyond the traditional model of graphitic platelets at random orientation. Using large atomistic models containing one million atoms, we redefine the meaning of the quantity La extracted from X-ray diffraction (XRD) patterns. Two complementary approaches are used to measure the size of graphenic crystallites, which are defined as regions of regularly arranged hexagons. Firstly, we calculate the X-ray diffraction pattern directly from the atomistic coordinates of the structure and analyse them following a typical experimental process. Second, the graphenic crystallites are identified from a direct geometrical approach. By mapping the structure directly, we replace the idealised picture of the crystallite with a more realistic representation of the material and provide a well-defined interpretation for LaL_a measurements of disordered carbon. A key insight is that the size distribution is skewed heavily towards small fragments, with more than 75% of crystallites smaller than half of LaL_a

    Calibrating the atomic balance by carbon nanoclusters

    Full text link
    Carbon atoms are counted at near atomic-level precision using a scanning transmission electron microscope calibrated by carbon nanocluster mass standards. A linear calibration curve governs the working zone from a few carbon atoms up to 34,000 atoms. This linearity enables adequate averaging of the scattering cross sections, imparting the experiment with near atomic-level precision despite the use of a coarse mass reference. An example of this approach is provided for thin layers of stacked graphene sheets. Suspended sheets with a thickness below 100 nm are visualized, providing quantitative measurement in a regime inaccessible to optical and scanning probe methods

    Rare-Earth Orthophosphates From Atomistic Simulations

    Get PDF
    Lanthanide phosphates (LnPO4) are considered as a potential nuclear waste form for immobilization of Pu and minor actinides (Np, Am, and Cm). In that respect, in the recent years we have applied advanced atomistic simulation methods to investigate various properties of these materials on the atomic scale. In particular, we computed several structural, thermochemical, thermodynamic and radiation damage related parameters. From a theoretical point of view, these materials turn out to be excellent systems for testing quantum mechanics-based computational methods for strongly correlated electronic systems. On the other hand, by conducting joint atomistic modeling and experimental research, we have been able to obtain enhanced understanding of the properties of lanthanide phosphates. Here we discuss joint initiatives directed at understanding the thermodynamically driven long-term performance of these materials, including long-term stability of solid solutions with actinides and studies of structural incorporation of f elements into these materials. In particular, we discuss the maximum load of Pu into the lanthanide-phosphate monazites. We also address the importance of our results for applications of lanthanide-phosphates beyond nuclear waste applications, in particular the monazite-xenotime systems in geothermometry. For this we have derived a state-of-the-art model of monazite-xenotime solubilities. Last but not least, we discuss the advantage of usage of atomistic simulations and the modern computational facilities for understanding of behavior of nuclear waste-related materials
    corecore