570 research outputs found

    Quality Control and Calibration of the Dual-Polarization Radar at Kwajalein, RMI

    Get PDF
    Weather radars, recording information about precipitation around the globe, will soon be significantly upgraded. Most of today s weather radars transmit and receive microwave energy with horizontal orientation only, but upgraded systems have the capability to send and receive both horizontally and vertically oriented waves. These enhanced "dual-polarimetric" (DP) radars peer into precipitation and provide information on the size, shape, phase (liquid / frozen), and concentration of the falling particles (termed hydrometeors). This information is valuable for improved rain rate estimates, and for providing data on the release and absorption of heat in the atmosphere from condensation and evaporation (phase changes). The heating profiles in the atmosphere influence global circulation, and are a vital component in studies of Earth s changing climate. However, to provide the most accurate interpretation of radar data, the radar must be properly calibrated and data must be quality controlled (cleaned) to remove non-precipitation artifacts; both of which are challenging tasks for today s weather radar. The DP capability maximizes performance of these procedures using properties of the observed precipitation. In a notable paper published in 2005, scientists from the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) at the University of Oklahoma developed a method to calibrate radars using statistically averaged DP measurements within light rain. An additional publication by one of the same scientists at the National Severe Storms Laboratory (NSSL) in Norman, Oklahoma introduced several techniques to perform quality control of radar data using DP measurements. Following their lead, the Topical Rainfall Measuring Mission (TRMM) Satellite Validation Office at NASA s Goddard Space Flight Center has fine-tuned these methods for specific application to the weather radar at Kwajalein Island in the Republic of the Marshall Islands, approximately 2100 miles southwest of Hawaii and 1400 miles east of Guam in the tropical North Pacific Ocean. This tropical oceanic location is important because the majority of rain, and therefore the majority of atmospheric heating, occurs in the tropics where limited ground-based radar data are available

    Solitary Fibrous Tumors of Chest: Another Look with the Oncologic Perspective

    Get PDF
    Solitary fibrous tumors are mesenchymal lesions that arise at a variety of sites, most commonly the pleura. Most patients are asymptomatic at diagnosis, with lesions being detected incidentally. Nevertheless, some patients present due to symptoms from local tumor compression (eg. of the airways and pulmonary parenchyma). Furthermore, radiological methods are not always conclusive in making a diagnosis, and thus, pathological analysis is often required. In the past three decades, immunohistochemical techniques have provided a gold standard in solitary fibrous tumor diagnosis. The signature marker of solitary fibrous tumor is the presence of the NAB2-STAT6 fusion that can be reliably detected with a STAT6 antibody. While solitary fibrous tumors are most often benign, they can be malignant in 10-20% of the cases. Unfortunately, histological parameters are not always predictive of benign vs malignant solitary fibrous tumors. As solitary fibrous tumors are generally regarded as relatively chemoresistant tumors; treatment is often limited to localized treatment modalities. The optimal treatment of solitary fibrous tumors appears to be complete surgical resection for both primary and local recurrent disease. However, in cases of suboptimal resection, large disease burden, or advanced recurrence, a multidisciplinary approach may be preferable. Specifically, radiotherapy for inoperable local disease can provide palliation/shrinkage. Given their sometimes -unpredictable and often- protracted clinical course, long-term follow-up post-resection is recommended

    A simple algorithm to assess patient suitability for Calypso-seed implantation for four-dimensional prostate localization

    Get PDF
    Purpose: To retrospectively determine the proportion of prostate cancer patients who are appropriate candidates for prostate localization with Calypso (Calypso Medical, Seattle, WA); to assess the accuracy of surface-anatomy in predicting prostate depth; and, to describe a simple clinical-algorithm predicting patient’s appropriateness for Calypso localization. Methods: Medical records and archived CT scans of all patients treated for localized prostate cancer at our institution between 2006 and 2007 were reviewed. Association between the feasibility of Calypso use, the depth of the prostate from the anterior torso, and a variety of anatomic factors were assessed (ANOVA, linear regression, and ROC). Results: Patients were appropriate for the Calypso system in 91% of cases (localize and track, 52%; localize only, 39%). Strong correlation between greater trochanter location and the posterior prostate was seen (r 2 =0.91, mean difference 0.6 cm). The negative predictive value of the greater trochanter measurements was 31%. 31/45 patients (69%) who were deemed inappropriate for Calypso based on greater trochanter to anterior torso measurements were eligible on the basis of CT-based measurements of prostate depth. Weight, BMI, waist circumference, and hip circumference) correlated with distance from the prostate to the anterior torso and were predictive of Calypso appropriateness. All patients with weight ?100 kg, BMI ?30, or waist/hip circumference ?100cm, were eligible for Calypso. Conclusions: Most prostate cancer patients are candidates for Calypso localization +/- tracking. The greater trochanter to anterior torso distance underestimates the number of eligible patients. Weight, BMI and waist/hip circumference are good predictors for Calypso appropriateness

    Radiation Dose-Volume Effects in the Esophagus

    Get PDF
    Publications relating esophageal radiation toxicity to clinical variables and to quantitative dose and dose–volume measures derived from three-dimensional conformal radiotherapy for non–small-cell lung cancer are reviewed. A variety of clinical and dosimetric parameters have been associated with acute and late toxicity. Suggestions for future studies are presented

    Radiation-Related Treatment Effects Across the Age Spectrum: Differences and Similarities or What the Old and Young Can Learn from Each Other

    Get PDF
    Radiation related effects in children and adults limit the delivery of effective radiation doses and result in long-term morbidity affecting function and quality of life. Improvements in our understanding of the etiology and biology of these effects, including the influence of clinical variables, dosimetric factors, and the underlying biologic processes has made treatment safer and more efficacious. However, the approach to studying and understanding these effects differs between children and adults. By using the pulmonary and skeletal organ systems as examples, comparisons are made across the age spectrum for radiation related effects including pneumonitis, pulmonary fibrosis, osteonecrosis and fracture. Methods for dosimetric analysis, incorporation of imaging and biology as well a length of follow-up are compared, contrasted and discussed for both organ systems in children and adults. Better understanding of each age specific approach and how it differs may improve our ability to study late effects of radiation across the age

    D-branes in Nongeometric Backgrounds

    Full text link
    "T-fold" backgrounds are generically-nongeometric compactifications of string theory, described by T^n fibrations over a base N with transition functions in the perturbative T-duality group. We review Hull's doubled torus formalism, which geometrizes these backgrounds, and use the formalism to constrain the D-brane spectrum (to leading order in g_s and alpha') on T^n fibrations over S^1 with O(n,n;Z) monodromy. We also discuss the (approximate) moduli space of such branes and argue that it is always geometric. For a D-brane located at a point on the base N, the classical ``D-geometry'' is a T^n fibration over a multiple cover of N.Comment: 29 pages; uses harvmac.tex; v2: substantial revision throughou

    Radiation Dose–Volume Effects in the Brain

    Get PDF
    We have reviewed the published data regarding radiotherapy (RT)-induced brain injury. Radiation necrosis appears a median of 1–2 years after RT; however, cognitive decline develops over many years. The incidence and severity is dose and volume dependent and can also be increased by chemotherapy, age, diabetes, and spatial factors. For fractionated RT with a fraction size of 80 Gy. For large fraction sizes (≥2.5 Gy), the incidence and severity of toxicity is unpredictable. For single fraction radiosurgery, a clear correlation has been demonstrated between the target size and the risk of adverse events. Substantial variation among different centers’ reported outcomes have prevented us from making toxicity–risk predictions. Cognitive dysfunction in children is largely seen for whole brain doses of ≥18 Gy. No substantial evidence has shown that RT induces irreversible cognitive decline in adults within 4 years of RT

    The utility of non-axial treatment beam orientations for lower lobe lung cancers

    Get PDF
    Purpose: Traditional treatment beams for non-small cell lung cancer are limited to the axial plane. For many tumor geometries non-axial orientations appear to reduce the dose to normal tissues (e.g. heart, liver). We hypothesize that non-axial beams provide a significant reduction in incidental irradiation of the heart and liver, while maintaining adequate target coverage. Materials and Methods: CT scans of twenty-four consecutive patients with lower lobe lung cancers were studied. For each patient, an opposed oblique axial beam pair and a competing non-axial opposed oblique pair were generated. The competing plans delivered comparable doses/margins to the GTV. DVHs and integral doses were computed for all structures of interest for the two competing plans. The integral dose was compared for axial and non-axial beams for each contoured organ using a paired t-test. Results: Dose to the heart was significantly lower for the non-axial plans (p=.0001). For 20/24 patients the integral heart dose was reduced by using non-axial beams. In those patients with tumors located in the inferior right lower lobe, a lower dose to the liver was achieved when non-axial beams were used. There were no meaningful differences in dose to the GTV, lungs, or skin between axial and non-axial beams. Conclusion: Non-axial beams can reduce the dose to the heart and liver in patients with lower lobe lung cancers. Non-axial beams may be clinically beneficial in these patients and should be considered as an option during planning

    Radiation Dose–Volume Effects and the Penile Bulb

    Get PDF
    The dose, volume, and clinical outcome data for penile bulb are reviewed for patients treated with external-beam radiotherapy. Most, but not all, studies find an association between impotence and dosimetric parameters (e.g., threshold doses) and clinical factors (e.g., age, comorbid diseases). According to the data available, it is prudent to keep the mean dose to 95% of the penile bulb volume to <50 Gy. It may also be prudent to limit the D70 and D90 to 70 Gy and 50 Gy, respectively, but coverage of the planning target volume should not be compromised. It is acknowledged that the penile bulb may not be the critical component of the erectile apparatus, but it seems to be a surrogate for yet to be determined structure(s) critical for erectile function for at least some techniques
    • …
    corecore