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Abstract
We have reviewed the published data regarding radiotherapy (RT)-induced brain injury. Radiation
necrosis appears a median of 1–2 years after RT; however, cognitive decline develops over many
years. The incidence and severity is dose and volume dependent and can also be increased by
chemotherapy, age, diabetes, and spatial factors. For fractionated RT with a fraction size of <2.5
Gy, an incidence of radiation necrosis of 5% and 10% is predicted to occur at a biologically
effective dose of 120 Gy (range, 100–140) and 150 Gy (range, 140–170), respectively. For twice-
daily fractionation, a steep increase in toxicity appears to occur when the biologically effective
dose is >80 Gy. For large fraction sizes (≥2.5 Gy), the incidence and severity of toxicity is
unpredictable. For single fraction radiosurgery, a clear correlation has been demonstrated between
the target size and the risk of adverse events. Substantial variation among different centers’
reported outcomes have prevented us from making toxicity–risk predictions. Cognitive
dysfunction in children is largely seen for whole brain doses of ≥18 Gy. No substantial evidence
has shown that RT induces irreversible cognitive decline in adults within 4 years of RT.
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1. CLINICAL SIGNIFICANCE
Radiotherapy (RT) plays an important role in the curative and palliative treatment of patients
with primary and metastatic brain tumors. Primary brain tumors account for 22% of tumors
in those <18 years of age. Brain metastases occur in ≈30% of patients diagnosed with solid
tumors, afflicting ≈170,000 Americans annually. The acute and late effects of RT on the
brain are common and represent a significant source of morbidity. Such morbidity is
particularly troubling in patients with baseline tumor-related dysfunction. In addition, the
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radiation fields used to treat the upper aerodigestive track (e.g., pharynx and nasal cavities)
often include a portion of the brain.

2. ENDPOINTS
The acute side effects of RT to the brain include nausea, vomiting, and headache; vertigo
and seizures are less frequent. These symptoms are transient and generally respond to
medication.

The present report summarizes the dose–volume predictors for the principal late side effects
of RT to the brain: radiation necrosis and cognitive deterioration. A biopsy is rarely
performed to confirm suspected radiation necrosis. The working definition used by most of
the studies listed in Tables 1 and 2 was “new symptoms with suggestive radiologic
findings.”

However, most investigators have reported their late toxicity rates as crude numbers
according to the number of patients treated rather than the number at risk (i.e., the
survivors). This method understates the risk, because some subjects will have died before
the toxicity has had a chance to develop. The actuarial rates have rarely been discussed.
Surgery, chemotherapy, steroids, antiepileptic agents, and opioids impair neurologic and
cognitive function, further confounding the interpretation of suspected RT toxicity.

3. CHALLENGES DEFINING VOLUMES
There is little disagreement regarding image segmentation of the entire brain, and little intra-
or interfraction movement occurs. However, segmenting the brain subregions is challenging
(e.g., the superior boundary of the brain stem). Currently the utility of subregion definition is
unclear.

4. REVIEW OF DOSE–VOLUME DATA
Radiation necrosis

For radiosurgery, the incidence of necrosis depends on the dose, volume, and region
irradiated (1–10) (Table 1 and Fig. 1). The Radiation Therapy Oncology Group conducted a
dose-escalation study that sought to define the maximal dose for targets of different sizes; all
subjects had previously undergone whole brain irradiation. The maximal tolerated dose for
targets 31–40 mm in diameter was 15 Gy, and for targets 21–30 mm in diameter, it was 18
Gy. For targets <20 mm, the maximal tolerated dose was >24 Gy (11). The volume of brain
receiving ≥12 Gy has been shown to correlate with both the incidence of radiation necrosis
and asymptomatic radiologic changes (Table 1).

The large variation in absolute complication rates among studies (Fig. 1) is difficult to
comprehend, but it might relate to differences in the definitions of the volume and toxicity,
the avoidance of critical structures, and the type and length of clinical follow-up.

For fractionated RT, the relationship between the radiation dose and radiation necrosis for
partial brain irradiation is presented in Table 2 (12–19) and Fig. 2, segregated by the
fractionation scheme. Different fractionation schemes were compared using the biologically
effective dose (BED) (20), with an α/β ratio of 3. For standard fractionation, a dose–
response relationship exists, such that an incidence of side effects of 5% and 10% occur at a
BED of 120 Gy (range, 100–140) and 150 Gy (range, 140–170), respectively (corresponding
to 72 Gy [range, 60–84] and 90 Gy [range, 84–102] in 2-Gy fractions). For twice-daily
fractionation, a steep increase in toxicity appears to occur when the BED is >80 Gy. For
daily large fraction sizes (>2.5 Gy), the incidence and severity of toxicity is unpredictable.
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The reader is cautioned against overinterpreting the data presented in Fig. 2, which was
created from a heterogeneous data pool (i.e., different target volumes, endpoints, sample
sizes, and brain regions). No evidence has shown that children are especially at risk of
radiation necrosis (21, 22).

Neurocognitive function in children
The neurocognitive effects of cranial RT in children have been studied in several settings.
With central nervous system prophylaxis for acute lymphoblastic leukemia, the addition of
24 Gy radiation to the whole brain (to a chemotherapy regimen) has been associated with a
median 13-point intelligence quotient reduction at 5 years after RT and poorer academic
achievement and self-image, and greater psychological distress (23) at 15 years after RT.
The reported toxicities have been lower (or not detected) when 14–18 Gy was used (24–26).

In medulloblastoma, the post-RT intelligence quotients were 10–15 points better after a
whole brain dose of 23.4 Gy vs. 36 Gy (27, 28). Others (29), but not all (30, 31), have also
noted a dose response in the 18–36-Gy range. Differences between the studies can be
explained by the inability of small studies to overcome the complex interactions among
dose, volume, patient age, and follow-up length. Merchant et al. (32) has suggested that
different regions of the brain, particularly the supratentorial area, are important in the
development of RT-associated cognitive decline.

Neurocognitive functioning in adults
The evidence for RT-induced neurocognitive injury in adults is weak. Irreversible cognitive
side effects were first highlighted in survivors who had undergone whole brain RT in 3–6
Gy/fraction (33). Subsequently, cognitive dysfunction was found to be frequently present
even before RT (34). Multiple studies have demonstrated improved cognitive function after
RT, because of its antitumor effects (35–39). The results from randomized studies of
“elective” whole brain RT (e.g., for lung small cell carcinoma) have been difficult to
interpret because those not receiving RT have tended to develop more brain metastases. In
one adult study, learning impairment did not develop until 5 years after RT (40); however,
few studies have followed up patients for this long.

Several studies have compared the cognitive function of patients who underwent RT with
that of those who did not. Four studies with a follow-up of ≤2 years found no difference (34,
41–43). However, the two studies with ≥5 years of follow-up noted negative cognitive
effects of RT; most of these patients had undergone partial brain RT (44, 45). The total
doses were 56 and 60 Gy; only those receiving fraction sizes >2 Gy showed cognitive
decline. Two randomized studies of high- vs. low-dose partial brain irradiation failed to
discern a difference in neurocognitive outcome (46, 47); however, an insensitive instrument
was used.

Two small studies suggested that whole brain RT is more detrimental than focal RT (48, 49).
These findings were not confirmed by a randomized trial comparing radiosurgery and
radiosurgery combined with whole brain RT, however this study used an insensitive
instrument and had a short follow-up period (50).

Thus, very limited evidence is available to show that brain RT in 2-Gy fractions causes
irreversible cognitive decline in adults.

5. FACTORS AFFECTING RISK
The radiation dose, fraction size, and volume are the major variables that influence the
development of radiation necrosis. Although location does not influence the susceptibility to
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radiation necrosis, necrosis is far more likely to be symptomatic in certain areas (e.g., corpus
callosum and brain stem) (51). Other suggested risk factors for radiation necrosis include
chemotherapy use, lower conformality index, shorter overall treatment time, older age, and
diabetes mellitus (12, 15, 30).

Young age is the most important risk factor for neurocognitive decline in children
undergoing cranial RT (29, 31, 52). Other risk factors include female gender, NF-1
mutation, extent of surgical resection, hydrocephalus, concomitant chemotherapy (especially
methotrexate), location, and volume of brain irradiated (31, 53–57). An excellent review can
be found in the report by Duffner (58).

The risk factors for neurocognitive decline in adults might include the volume irradiated (48,
49), large fraction size (44), and longer interval after treatment (40).

6. MATHEMATICAL/BIOLOGIC MODELS
The linear-quadratic model has been used to model radiation necrosis in the brain after
fractionated RT (12, 13, 20). The α/β ratio for the normal brain has been estimated to be 2.9
(13).

For radiosurgery, a variety of models have been suggested. All are highly simplified and
ignore many relevant variables, and none has been adequately validated.

7. SPECIAL SITUATIONS
Re-irradiation is frequently performed in the brain. A meta-analysis of brain re-irradiation
(interval between courses, 3–55 months) found no cases of necrosis when the total radiation
dose was <100 Gy (normalized to 2 Gy/fraction; α/β ratio, 2) (59).

Unlike other settings, in primary central nervous system lymphoma, RT (to ≈40 Gy) has
been associated with cognitive decline, especially in those >60 years old (60, 61). The
heightened sensitivity of this population to irradiation might be explained by the tumor’s
highly diffuse, angiocentric growth pattern and that most patients receive high-dose
methotrexate, a potent neurotoxin. As a result, upfront full-dose RT is now often avoided in
elderly patients with this disease. A lower radiation dose of 23.4 Gy might be safe even in
older patients (62).

8. RECOMMENDED DOSE–VOLUME LIMITS
The constraints presented in the following paragraphs are the best estimates determined
from the available data; however, high-level evidence is lacking. The constraints should be
used with appropriate caution and interpreted within the clinical context.

Fractionated RT to partial brain
For standard fractionation, a 5% and 10% risk of symptomatic radiation necrosis is predicted
to occur at a BED of 120 Gy (range, 100–140) and 150 Gy (range, 140–170), respectively
(corresponding to 72 Gy [range, 60–84] and 90 Gy [range, 84–102] in 2-Gy fractions). The
brain is especially sensitive to fraction sizes >2 Gy and, surprisingly, twice-daily RT.

Cognitive changes occur in children after ≥18 Gy to the entire brain. The effect of
irradiation on the cognitive performance of adults is less well defined.

Emami’s original estimate for fractionated partial brain RT (5% risk at 5 years for one-third
brain, 60 Gy) appears to be overly conservative. We have concluded that the 5% risk at 5
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years of the partial brain for normally fractionated RT is 72 Gy (range, 60–84). We
emphasize that for most cancers, there is no clinical indication for giving fractionated RT
>60 Gy and that, in some scenarios, an incidence of 1–5% radiation necrosis at 5 years
would be unacceptably high.

Radiosurgery
The risk of complications increases with the size of the target volume. Toxicity increases
rapidly once the volume of the brain exposed to >12 Gy is >5–10 cm3. Eloquent areas of the
brain (brain stem, corpus callosum) require more stringent limits. The substantial variation
between the reported treatment parameters and outcomes from different centers has
prevented us from making precise toxicity risk predictions.

9. FUTURE TOXICITY STUDIES
Modern imaging modalities (e.g., magnetic resonance imaging perfusion and spectroscopy,
positron emission tomography) can detect damage before routine computed tomography or
magnetic resonance imaging and symptom development (63–65). Hahn et al. (66) detected
metabolic changes in normal brain that had undergone >40 Gy and correlated these with
neurocognitive effects. Future studies should aim to link early imaging changes with
clinically relevant endpoints, facilitating rapid and quantitative estimates of treatment-
induced toxicity.

The effect of chemotherapy and newer targeted biologic agents on the incidence and severity
of radiation necrosis and cognitive outcomes should be systematically addressed.

Higher functions require input from spatially disparate brain regions, producing a complex
interaction between the radiation dose distribution and neurologic outcomes. A recent study
demonstrated the utility of diffusion-tensor tractography in assessing the tolerance
thresholds for different neurologic tracts (67).

The designation and avoidance of “key” areas of the brain is needed. For instance, the role
of the hippocampus in memory formation has recently been emphasized, encouraging
clinicians to limit the radiation dose to it (62). The efficacy of such approaches has not yet
been proved. Also, a quick and sensitive test for neurocognitive function that can be
included in clinical studies is needed.

The best method to obtain quality long-term follow-up data would be the creation of an
international registry to gather and relate demographic factors, diagnoses, co-morbidities,
baseline imaging findings, other treatment modalities, and the three-dimensional isodose
distribution (with or without biospecimens) to outcomes. A National Cancer Institute-
sponsored institution such as the Radiation Therapy Oncology Group would be well suited
for both data collection and analysis.

10. TOXICITY SCORING
The Common Terminology Criteria for Adverse Events, version 4.0, is recommended as a
tool for scoring neurocognitive dysfunction. Long-term follow-up (e.g., ≥5 years) might be
necessary to detect neurologic/cognitive decline. Prospective RT studies should incorporate
formal neurocognitive assessments. Future studies reporting RT brain toxicity should
provide a clear definition of toxicity, detailed normal brain dose–volume information, the
use of repeat RT and systemic treatments, and should report toxicity as an actuarial (as
opposed to a crude) rate. We recommend adoption of the “volume receiving 12 Gy” as the
standard method of reporting the dose to the normal brain in radiosurgery procedures. The
location should also be reported.
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Fig. 1.
Relationship between volume receiving high-dose irradiation and incidence of radiation
necrosis in single-fraction stereotactic radiosurgery. Studies differed in their completeness of
follow-up, definition of volume, and definition of radiation necrosis. Graph based on data
presented in Table 1. Volume plotted as a point, representing mid-point of volume range.
V10 = volume receiving 10 Gy; V12 = volume receiving 12 Gy; RxV = treatment volume.
Flickinger data is shown for patients with either radiologic or symptomatic evidence of
necrosis (marked as “All”), or only those with symptomatic necrosis (Symp). The other
authors’ data refers to symptomatic necrosis.
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Fig. 2.
Relationship between biologically effective dose (BED) and radiation necrosis after
fractionated radiotherapy. Fit was done using nonlinear least-squares algorithm using Matlab
software (The MathWorks, Natick, MA). Nonlinear function chosen was probit model
(similar functional form to Lyman model). Dotted lines represent 95% confidence levels;
each dot represents data from specific study (Table 2), n = patient numbers as shown. (a)
Fraction size <2.5 Gy; (b) fraction size ≥2.5 Gy (data too scattered to allow plotting of
“best-fit” line); and (c) twice-daily radiotherapy.
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