866 research outputs found

    Examining compressed speech listening measure with college students who are visually impaired or blind

    Full text link
    Psychological assessments are a way of gaining some understanding of an individual in order to help make informed decisions (Sattler, 2001). These assessments offer potentially important and valuable information that can assist individuals with impaired vision in learning additional skills, improving deficient abilities, and in providing diagnostic information for future research. In addition, psychological assessments are frequently used to diagnosis a variety of psychological and learning disorders. Assessing individuals with impaired vision presents a variety of challenges from those encountered with the general population. The current study provided an investigation into the relationship of the results of the compressed speech listening test (CSLT). The CSLT suggests that making sense from a compressed speech sound may access a function comparable to that used in traditional vision-based tests of simultaneous processing. The CSLT is utilized for those who are visually impaired or blind (VI/B) and those who are sighted with an eventual goal to determine whether one possible use for the CSLT could be for assessing simultaneous processing in the sighted and VI/B. The purpose of this study was to see if there was (1) a relationship between CSLT and Gestalt closure, (2) a difference in performance between sighted and VI/ participants on CSLT, and, (3) within the VI/B participants was there a difference in performance between those who require the use of a screen reader and those whose visual limitation were accommodated with large print? The results showed a statistically significant positive correlation between CSLT raw score correct and Gestalt Closure test in the sighted participants. There was a statistically significant difference in the CSLT test scores for the sighted participants and the VI/B participants. There was not a statistically significant difference in CSLT of the VI/B participants between those who require JAWS and those who were helped with large print. Additional analysis\u27 with the CSLT included efficiency (ratio of accuracy and response time) scores and mean response time scores. In regard to CSLT efficiency scores, it was evident that there was a statistically significant difference between VI/B participants who utilized JAWS screen reader and those who utilized large print

    Hiv-1 tat and morphine differentially disrupt pyramidal cell structure and function and spatial learning in hippocampal area ca1: Continuous versus interrupted morphine exposure

    Get PDF
    About half the people infected with human immunodeficiency virus (HIV) have neurocognitive deficits that often include memory impairment and hippocampal deficits, which can be exacerbated by opioid abuse. To explore the effects of opioids and HIV on hippocampal CA1 pyramidal neuron structure and function, we induced HIV-1 transactivator of transcription (Tat) expression in transgenic mice for 14 d and co-administered time-release morphine or vehicle subcutaneous implants during the final 5 d (days 9–14) to establish steady-state morphine levels. Morphine was withheld from some ex vivo slices during recordings to begin to assess the initial pharmacokinetic consequences of opioid withdrawal. Tat expression reduced hippocampal CA1 pyramidal neuronal excitability at lower stimulating currents. Pyramidal cell firing rates were unaffected by continuous morphine exposure. Behaviorally, exposure to Tat or high dosages of morphine impaired spatial memory. Exposure to Tat and steady-state levels of morphine appeared to have largely independent effects on pyramidal neuron structure and function, a response that is distinct from other vulnerable brain regions such as the striatum. By contrast, acutely withholding morphine (from morphine-tolerant ex vivo slices) revealed unique and selective neuroadaptive shifts in CA1 pyramidal neuronal excitability and dendritic plasticity, including some interactions with Tat. Collectively, the results show that opioid-HIV interactions in hippocampal area CA1 are more nuanced than previously assumed, and appear to vary depending on the outcome assessed and on the pharmacokinetics of morphine exposure

    Deep Thermal Imaging: Proximate Material Type Recognition in the Wild through Deep Learning of Spatial Surface Temperature Patterns

    Get PDF
    We introduce Deep Thermal Imaging, a new approach for close-range automatic recognition of materials to enhance the understanding of people and ubiquitous technologies of their proximal environment. Our approach uses a low-cost mobile thermal camera integrated into a smartphone to capture thermal textures. A deep neural network classifies these textures into material types. This approach works effectively without the need for ambient light sources or direct contact with materials. Furthermore, the use of a deep learning network removes the need to handcraft the set of features for different materials. We evaluated the performance of the system by training it to recognise 32 material types in both indoor and outdoor environments. Our approach produced recognition accuracies above 98% in 14,860 images of 15 indoor materials and above 89% in 26,584 images of 17 outdoor materials. We conclude by discussing its potentials for real-time use in HCI applications and future directions.Comment: Proceedings of the 2018 CHI Conference on Human Factors in Computing System

    HIV-1 Tat causes cognitive deficits and selective loss of parvalbumin, somatostatin, and neuronal nitric oxide synthase expressing hippocampal CA1 interneuron subpopulations

    Get PDF
    Memory deficits are characteristic of HIV-associated neurocognitive disorders (HAND) and co-occur with hippocampal pathology. The HIV-1 transactivator of transcription (Tat), a regulatory protein, plays a significant role in these events, but the cellular mechanisms involved are poorly understood. Within the hippocampus, diverse populations of interneurons form complex networks; even subtle disruptions can drastically alter synaptic output, resulting in behavioral dysfunction. We hypothesized that HIV-1 Tat would impair cognitive behavior and injure specific hippocampal interneuron subtypes. Male transgenic mice that inducibly expressed HIV-1 Tat (or non-expressing controls) were assessed for cognitive behavior or had hippocampal CA1 subregions evaluated via interneuron subpopulation markers. Tat exposure decreased spatial memory in a Barnes maze and mnemonic performance in a novel object recognition test. Tat reduced the percentage of neurons expressing neuronal nitric oxide synthase (nNOS) without neuropeptide Y immunoreactivity in the stratum pyramidale and the stratum radiatum, parvalbumin in the stratum pyramidale, and somatostatin in the stratum oriens, which are consistent with reductions in interneuron-specific interneuron type 3 (IS3), bistratified, and oriens-lacunosum-moleculare interneurons, respectively. The findings reveal that an interconnected ensemble of CA1 nNOS-expressing interneurons, the IS3 cells, as well as subpopulations of parvalbumin- and somatostatin-expressing interneurons are preferentially vulnerable to HIV-1 Tat. Importantly, the susceptible interneurons form a microcircuit thought to be involved in feedback inhibition of CA1 pyramidal cells and gating of CA1 pyramidal cell inputs. The identification of vulnerable CA1 hippocampal interneurons may provide novel insight into the basic mechanisms underlying key functional and neurobehavioral deficits associated with HAND

    Mantle sources and magma evolution in Europe's largest rare earth element belt (Gardar Province, SW Greenland) : new insights from sulfur isotopes

    Get PDF
    This work is a contribution to the HiTech AlkCarb project and was funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 689909. W.H. also acknowledges support from a UKRI Future Leaders Fellowship (MR/S033505/1). A.J.B. is funded by the NERC National Environment Isotope Facility award (NE/S011587/1) and the Scottish Universities Environmental Research Centre.Alkaline igneous complexes are often rich in rare earth elements (REE) and other metals essential for modern technologies. Although a variety of magmatic and hydrothermal processes explain the occurrence of individual deposits, one common feature identified in almost all studies, is a REE-enriched parental melt sourced from the lithospheric mantle. Fundamental questions remain about the origin and importance of the mantle source in the genesis of REE-rich magmas. In particular, it is often unclear whether localized enrichments within an alkaline province reflect heterogeneity in the mantle source lithology (caused by prior subduction or plume activity) or variations in the degree of partial melting and differentiation of a largely homogeneous source. Sulfur isotopes offer a means of testing these hypotheses because they are unaffected by high temperature partial melting processes and can fingerprint different mantle sources. Although one must be careful to rule out subsequent isotope fractionation during magma ascent, degassing and crustal interactions. Here, we present new S concentration and isotope (δ34S) measurements, as well as a compilation of major and trace element data, for a suite of alkaline magmatic units and crustal lithologies from the Mesoproterozoic Gardar Province. Samples span all phases of Gardar magmatism (1330–1140 Ma) and include regional dykes, rift lavas and the alkaline complexes Motzfeldt and Ilímaussaq, which represent two of Europe's largest REE deposits. We show that the vast majority of our 115 samples have S contents >100 ppm and δ34S of −1 to 5‰. Only 8 samples (with low S contents, <100 ppm) show evidence for crustal interactions, implying that the vast majority of Gardar melts preserve the S isotopic signature of their magma source. Importantly, samples from across the Gardar Province δ34S have above the canonical mantle range (≤−1.4‰) and therefore require recycled surface S in their mantle source. Elevated values are explained by a period of Andean-style subduction and mantle metasomatism which took place ∼500 Ma before rift onset and are also supported by trace elements signatures (e.g. Ba/La) which match modern subduction zones. Comparing the various generations of Gardar magmas, we find that δ34S  values, large ion lithophile elements (K, Ba, P) and selective incompatible elements (Nb and light REE) are particularly enriched in the Late Gardar dykes, alkaline complexes and clusters of silica-undersaturated dykes spatially associated with the alkaline complexes. These data indicate that subduction-related metasomatism of the Gardar mantle was spatially heterogeneous, and that alkaline complexes are sourced from localized mantle domains highly enriched in 34S, REE, alkalis and volatiles (particularly, F). Since alkalis and volatiles play an essential role in driving extreme differentiation of alkaline melts and fluids, we suggest the co-location of these species plus incompatible metals at high concentrations in the lithospheric mantle is a critical first-step in the genesis of a world-class alkaline REE deposit. S isotopes are powerful tools for identifying enriched mantle domains and the sources of mineralized alkaline igneous bodies.Publisher PDFPeer reviewe

    A theoretical investigation of the low lying electronic structure of poly(p-phenylene vinylene)

    Full text link
    The two-state molecular orbital model of the one-dimensional phenyl-based semiconductors is applied to poly(p-phenylene vinylene). The energies of the low-lying excited states are calculated using the density matrix renormalization group method. Calculations of both the exciton size and the charge gap show that there are both Bu and Ag excitonic levels below the band threshold. The energy of the 1Bu exciton extrapolates to 2.60 eV in the limit of infinite polymers, while the energy of the 2Ag exciton extrapolates to 2.94 eV. The calculated binding energy of the 1Bu exciton is 0.9 eV for a 13 phenylene unit chain and 0.6 eV for an infinite polymer. This is expected to decrease due to solvation effects. The lowest triplet state is calculated to be at ca. 1.6 eV, with the triplet-triplet gap being ca. 1.6 eV. A comparison between theory, and two-photon absorption and electroabsorption is made, leading to a consistent picture of the essential states responsible for most of the third-order nonlinear optical properties. An interpretation of the experimental nonlinear optical spectroscopies suggests an energy difference of ca. 0.4 eV between the vertical energy and ca. 0.8 eV between the relaxed energy, of the 1Bu exciton and the band gap, respectively.Comment: LaTeX, 19 pages, 7 eps figures included using epsf. To appear in Physical Review B, 199

    Multicentre randomised controlled trial: protocol for Plasma-Lyte Usage and Assessment of Kidney Transplant Outcomes in Children (PLUTO)

    Get PDF
    INTRODUCTION: Acute electrolyte and acid-base imbalance is experienced by many children following kidney transplantation. When severe, this can lead to complications including seizures, cerebral oedema and death. Relatively large volumes of intravenous fluid are administered to children perioperatively in order to establish perfusion to the donor kidney, the majority of which are from living and deceased adult donors. Hypotonic intravenous fluid is commonly used in the post-transplant period due to clinicians' concerns about the sodium, chloride and potassium content of isotonic alternatives when administered in large volumes.Plasma-Lyte 148 is an isotonic, balanced intravenous fluid that contains sodium, chloride, potassium and magnesium with concentrations equivalent to those of plasma. There is a physiological basis to expect that Plasma-Lyte 148 will reduce the incidence of clinically significant electrolyte and acid-base abnormalities in children following kidney transplantation compared with current practice.The aim of the Plasma-Lyte Usage and Assessment of Kidney Transplant Outcomes in Children (PLUTO) trial was to determine whether the incidence of clinically significantly abnormal plasma electrolyte levels in paediatric kidney transplant recipients will be different with the use of Plasma-Lyte 148 compared with intravenous fluid currently administered. METHODS AND ANALYSIS: PLUTO is a pragmatic, open-label, randomised controlled trial comparing Plasma-Lyte 148 to current care in paediatric kidney transplant recipients, conducted in nine UK paediatric kidney transplant centres.A total of 144 children receiving kidney transplants will be randomised to receive either Plasma-Lyte 148 (the intervention) intraoperatively and postoperatively, or current fluid. Apart from intravenous fluid composition, all participants will receive standard clinical transplant care.The primary outcome measure is acute hyponatraemia in the first 72 hours post-transplant, defined as laboratory plasma sodium concentration of <135 mmol/L. Secondary outcomes include symptoms of acute hyponatraemia, other electrolyte and acid-base imbalances and transplant kidney function.The primary outcome will be analysed using a logistic regression model adjusting for donor type (living vs deceased donor), patient weight (<20 kg vs ≥20 kg pretransplant) and transplant centre as a random effect. ETHICS AND DISSEMINATION: The trial received Health Research Authority approval on 20 January 2020. Findings will be presented to academic groups via national and international conferences and peer-reviewed journals. The patient and public involvement group will play an important part in disseminating the study findings to the public domain

    Radiation Dose–Volume Effects of the Urinary Bladder

    Get PDF
    An in-depth overview of the normal-tissue radiation tolerance of the urinary bladder is presented. The most informative studies consider whole-organ irradiation. The data on partial-organ/nonuniform irradiation are suspect because the bladder motion is not accounted for, and many studies lack long enough follow-up data. Future studies are needed

    L-Edge Spectroscopy of Dilute, Radiation-Sensitive Systems Using a Transition-Edge-Sensor Array

    Get PDF
    We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by conventional grating-based spectrometers. These results show that soft X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples.Comment: 19 pages, 4 figure
    • …
    corecore