5 research outputs found

    Application of the similarity theory to analysis of photocatalytic hydrogen production and photocurrent generation

    Get PDF
    In this research some methods of the similarity theory were quantitatively applied to the description of the relationship between the efficiencies of the photocatalytic hydrogen production and photocurrent generation for the first time. Two possible similarity criteria, namely, such as the ratio of the number of electrons involved in the photocatalytic reaction to the generation of photocurrent ones and the ratio of energies transformed in the case of photocatalytic hydrogen evolution to the photocurrent, were obtained by the dimensional analysis. The literature data allow checking the first criterion. The application of the first possible similarity criterion to the samples with different chemical nature, solid solutions, series, in which the synthesis time or the ratio of catalyst components, electrolyte amount or its nature is changed, was analyzed. It was shown that the ratio of electrons may serve as the similarity criterion only under the conditions of geometric and physical similarities

    Studying effects of external conditions of electrochemical measurements on the photoelectrochemical properties of semiconductors: cyclic voltammetry, impedance spectroscopy, and Mott – Schottky method

    Get PDF
    In this paper, the dependences of the semiconductors’ photoelectrochemical properties on the experimental conditions were studied for the solid solution of CdS and ZnS, graphitic carbon nitride, and the platinized carbon nitride. The cyclic voltammograms were obtained under different scan rates. The sample investigations were carried out by two ways, at the constant external voltage and varied amplitudes and at different external voltages and the fixed amplitude. The Mott – Schottky dependences were studied at different frequencies. The basic dependences of the changes in the photoelectrode target characteristics on the experimental condition were found. Some recommendations for the correct comparison of qualitative and quantitative photoelectrochemical data were formulated.https://doi.org/10.15826/elmattech.2023.2.01

    Solid solutions of CdS and ZnS: Comparing photocatalytic activity and photocurrent generation

    No full text
    The series of Cd1-xZnxS (x = 0–1.0) photocatalysts and Cd1-xZnxS/FTO thin film photoelectrodes were prepared. The obtained samples were studied by X-ray diffraction method (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and N2 low temperature adsorption. The photocatalysts were tested in the reaction of hydrogen production from Na2S/Na2SO3 solution under visible light irradiation. The photocurrents were measured in aqueous solution of Na2Sn and NaCl. It was shown that the target properties in the hydrogen evolution and photocurrent production are changed differently dependent on the composition of the mixed solid solutions. The highest photocatalytic hydrogen production rate was observed over Cd0.3Zn0.7S while the most effective photoelectrode was Cd0.8Zn0.2S/FTO. The Cd1-xZnxS/FTO samples were studied by the electrochemical methods in details. The factors affecting the photocatalytic activity and the photocurrent generation were found and listed for the first time. Conduction band potential (or flat band potential) and electron lifetime play a crucial role for effective photocatalytic hydrogen production over Cd1-xZnxS. Optimal photoelectrochemical characteristics were obtained in case of high values of electron lifetime. If the electron lifetimes of the tested samples have similar values, the high concentration of charge carriers is required for high photocurrent generation over Cd1-xZnxS/FTO photoelectrodes

    Constructing g-C3N4/Cd1−xZnxS-Based Heterostructures for Efficient Hydrogen Production under Visible Light

    No full text
    Two types of photocatalysts, 1%Pt/Cd1−xZnxS/g-C3N4 (x = 0.2–0.3) and Cd1−xZnxS/1%Pt/g-C3N4 (x = 0.2–0.3), were synthesized by varying the deposition order of platinum, and a solid solution of cadmium and zinc sulfides onto the surface of g-C3N4. The characterization of photocatalysts showed that, for 1%Pt/Cd1−xZnxS/g-C3N4, small platinum particles were deposited onto a solid solution of cadmium and zinc sulfides; in the case of Cd1−xZnxS/1%Pt/g-C3N4, enlarged platinum clusters were located on the surface of graphitic carbon nitride. Based on the structure of the photocatalysts, we assumed that, in the first case, type II heterojunctions and, in the latter case, S-scheme heterojunctions were realized. The activity of the synthesized samples was tested in hydrogen evolution from triethanolamine (TEOA) basic solution under visible light (λ = 450 nm). A remarkable increase in hydrogen evolution rate compared to single-phase platinized 1%Pt/Cd1−xZnxS photocatalysts was observed only in the case of ternary photocatalysts with platinum located on the g-C3N4 surface, Cd1−xZnxS/1%Pt/g-C3N4. Thus, we proved using kinetic experiments and characterization techniques that, for composite photocatalysts based on Cd1−xZnxS and g-C3N4, the formation of the S-scheme mechanism is more favorable than that for type II heterojunction. The highest activity, 2.5 mmol H2 g−1 h−1, with an apparent quantum efficiency equal to 6.0% at a wavelength of 450 nm was achieved by sample 20% Cd0.8Zn0.2S/1% Pt/g-C3N4
    corecore