4 research outputs found

    Comparison of reservation protocols for SOA and MEMS technology

    Get PDF
    The data transmission by high-speed optical networks has an upward trend. The most effective data transmission can be achieved by powerful reservation protocols, which are together with optical switches very important parts of high-speed optical networks. This paper deals with new reservation protocol called Search & Compare, which is designed according to the well-known Segment-based Robust Fast Optical Reservation Protocol. In this paper, we present time analyses of both reservation protocols. We focused mainly on intra-segment time analyses. During the reservation of network resources, we used the optical cross-connect as the core node, which is based on microelectromechanical system and semiconductor optical amplifier. These two technologies are becoming the dominant technologies in optical switching

    Development of the diagnostic tools for the COMPASS-U tokamak and plans for the first plasma

    No full text
    The COMPASS-U tokamak (R = 0.894 m, a = 0.27 m, Bt = 5 T, Ip = 2 MA) is a new medium-size device with fully metallic plasma facing components, currently under construction at the Institute of Plasma Physics of the Czech Academy of Sciences in Prague. It features a unique combination of parameters, such as a high temperature of the tokamak walls up to 500 ◦C allowing a high recycling regime, a high magnetic field connected with a high plasma density above 1020 m -3 and with a high heat flux (perpendicular to divertor targets) density at the outer strikepoint up to 90 MW/m2 in attached conditions. These parameters of the device pose strict constraints and requirements on the design of individual diagnostic systems. Strategy and present status of the development of the diagnostic systems for COMPASS-U are provided. Plans for a diagnostic set for the first plasma are reviewed. The review of the diagnostics systems involves the high-temperature compatible slow (up to 20 kHz) and fast (up to several MHz) inductive and non-inductive magnetic sensors (including Thick Printed Copper coils and Hall sensors), the sub-millimetre interferometer with an unambiguous channel, Electron Cyclotron Emission, the interlock and overview cameras, high resolution Thomson scattering, radiation diagnostics (neutron diagnostics, soft and hard X-ray diagnostics, bolometers, impurity monitors, effective ion charge), probe diagnostics (including rail probes) and manipulators

    Preliminary design of the COMPASS upgrade tokamak

    Get PDF
    COMPASS Upgrade is a new medium size, high magnetic field tokamak (R = 0.9 m, Bt = 5 T, Ip = 2 MA) currently under design in the Czech Republic. It will provide unique capabilities for addressing some of the key challenges in plasma exhaust physics, advanced confinement modes and advanced plasma configurations as well as testing new plasma facing materials and liquid metal divertor concepts. This paper contains an overview of the preliminary engineering design of the main systems of the COMPASS Upgrade tokamak (vacuum vessel, central solenoid and poloidal field coils, toroidal field coils, support structure, cryostat, cryogenic system, power supply system and machine monitoring and protection system). The description of foreseen auxiliary plasma heating systems and plasma diagnostics is also provided as well as a summary of expected plasma performance and available plasma configurations

    Overview of the COMPASS results

    Get PDF
    COMPASS addressed several physical processes that may explain the behaviour of important phenomena. This paper presents results related to the main fields of COMPASS research obtained in the recent two years, including studies of turbulence, L–H transition, plasma material interaction, runaway electron, and disruption physics: • Tomographic reconstruction of the edge/SOL turbulence observed by a fast visible camera allowed to visualize turbulent structures without perturbing the plasma. • Dependence of the power threshold on the X-point height was studied and related role of radial electric field in the edge/SOL plasma was identified. • The effect of high-field-side error fields on the L–H transition was investigated in order to assess the influence of the central solenoid misalignment and the possibility to compensate these error fields by low-field-side coils. • Results of fast measurements of electron temperature during ELMs show the ELM peak values at the divertor are around 80% of the initial temperature at the pedestal. • Liquid metals were used for the first time as plasma facing material in ELMy H-mode in the tokamak divertor. Good power handling capability was observed for heat fluxes up to 12 MW m−2 and no direct droplet ejection was observed. • Partial detachment regime was achieved by impurity seeding in the divertor. The evolution of the heat flux footprint at the outer target was studied. • Runaway electrons were studied using new unique systems—impact calorimetry, carbon pellet injection technique, wide variety of magnetic perturbations. Radial feedback control was imposed on the beam. • Forces during plasma disruptions were monitored by a number of new diagnostics for vacuum vessel (VV) motion in order to contribute to the scaling laws of sideways disruption forces for ITER. • Current flows towards the divertor tiles, incl. possible short-circuiting through PFCs, were investigated during the VDE experiments. The results support ATEC model and improve understanding of disruption loads
    corecore