12 research outputs found

    Formation, Characterization, and Bonding of <i>cis</i>- and <i>trans</i>-[PtCl<sub>2</sub>{Te(CH<sub>2</sub>)<sub>6</sub>}<sub>2</sub>], <i>cis-trans</i>-[Pt<sub>3</sub>Cl<sub>6</sub>{Te(CH<sub>2</sub>)<sub>6</sub>}<sub>4</sub>], and <i>cis</i>-<i>trans</i>-[Pt<sub>4</sub>Cl<sub>8</sub>{Te(CH<sub>2</sub>)<sub>6</sub>}<sub>4</sub>]: Experimental and DFT Study

    No full text
    [PtCl2{Te(CH2)6}2] (1) was synthesized from the cyclic telluroether Te(CH2)6 and cis-[PtCl2(NCPh)2] in dichloromethane at room temperature under the exclusion of light. The crystal structure determination showed that in the solid state, 1 crystallizes as yellow plate-like crystals of the cis-isomer 1cis and the orange-red interwoven needles of 1trans. The crystals could be separated under the microscope. NMR experiments showed that upon dissolution of the crystals of 1cis in CDCl3, it isomerizes and forms a dynamic equilibrium with the trans-isomer 1trans that becomes the predominant species. Small amounts of cis-trans-[Pt3Cl6{Te(CH2)6}4] (2) and cis-trans-[Pt4Cl8{Te(CH2)6}4] (3) were also formed and structurally characterized. Both compounds show rare bridging telluroether ligands and two different platinum coordination environments, one exhibiting a cis-Cl/cis-Te(CH2)6 arrangement and the other a trans-Cl/trans-Te(CH2)6 arrangement. Complex 2 has an open structure with two terminal and two bridging telluroether ligands, whereas complex 3 has a cyclic structure with four Te(CH2)6 bridging ligands. The bonding and formation of the complexes have been discussed through the use of DFT calculations combined with QTAIM analysis. The recrystallization of the mixture of the 1:1 reaction from d6-DMSO afforded [PtCl2{S(O)(CD3)2}{Te(CH2)6}] (4) that could also be characterized both structurally and spectroscopically

    Eosinophils and neutrophils : molecular differences revealed by spontaneous Raman, CARS and fluorescence microscopy

    Get PDF
    Leukocytes are a part of the immune system that plays an important role in the host's defense against viral, bacterial, and fungal infections. Among the human leukocytes, two granulocytes, neutrophils (Ne) and eosinophils (EOS) play an important role in the innate immune system. For that purpose, eosinophils and neutrophils contain specific granules containing protoporphyrin-type proteins such as eosinophil peroxidase (EPO) and myeloperoxidase (MPO), respectively, which contribute directly to their anti-infection activity. Since both proteins are structurally and functionally different, they could potentially be a marker of both cells' types. To prove this hypothesis, UV-Vis absorption spectroscopy and Raman imaging were applied to analyze EPO and MPO and their content in leukocytes isolated from the whole blood. Moreover, leukocytes can contain lipidic structures, called lipid bodies (LBs), which are linked to the regulation of immune responses and are considered to be a marker of cell inflammation. In this work, we showed how to determine the number of LBs in two types of granulocytes, EOS and Ne, using fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy. Spectroscopic differences of EPO and MPO can be used to identify these cells in blood samples, while the detection of LBs can indicate the cell inflammation process

    Differential response of liver sinusoidal endothelial cells and hepatocytes to oleic and palmitic acid revealed by Raman and CARS imaging

    No full text
    Excess circulating fatty acids contribute to endothelial dysfunction that subsequently aggravates the metabolic conditions such as fatty liver diseases. However, the exact mechanism of this event is not fully understood, and the investigation on the effect of a direct exposure to fatty acids together with their subsequent fate is of interest. In this work we employed a chemically specific and label-free techniques such as Raman and CARS microscopies, to investigate the process of lipid droplets (LDs) formation in endothelial cells and hepatocytes after exposure to oleic and palmitic acid. We aimed to observe the changes in the composition of LDs associated with metabolism and degradation of lipids. We were able to characterize the diversity in the formation of LDs in endothelium as compared to hepatocytes, as well as the differences in the formation of LDs and degradation manner with respect to the used fatty acid. Thus, for the first time the spectral characteristics of LDs formed in endothelial cells after incubation with oleic and palmitic acid is presented, including the time-dependent changes in their chemical composition

    Identification of inflammatory markers in eosinophilic cells of the immune system : fluorescence, Raman and CARS imaging can recognize markers but differently

    No full text
    Eosinophils (Eos) play an important role in the immune system's response releasing several inflammatory factors and contributing to allergic rhinitis, asthma, or atopic dermatitis. Since Eos have a relatively short lifetime after isolation from blood, usually eosinophilic cell line (EoL-1) is used to study mechanisms of their activation and to test therapies. In particular, EoL-1 cells are examined in terms of signalling pathways of the inflammatory response manifested by the presence of lipid bodies (LBs). Here we examined the differences in response to inflammation modelled by various factors, between isolated human eosinophils and EoL-1 cells, as manifested in the number and chemical composition of LBs. The analysis was performed using fluorescence, Raman, and coherent anti-Stokes Raman scattering (CARS) microscopy, which recognised the inflammatory process in the cells, but it is manifested slightly differently depending on the method used. We showed that unstimulated EoL-1 cells, compared to isolated eosinophils, contained more LBs, displayed different nucleus morphology and did not have eosinophilic peroxidase (EPO). In EoL-1 cells stimulated with various proinflammatory agents, including butyric acid (BA), liposaccharide (LPS), or cytokines (IL-1β, TNF-α), an increased production of LBs with a various degree of lipid unsaturation was observed in spontaneous Raman spectra. Furthermore, stimulation of EoL-1 cells resulted in alterations of the LBs morphology. In conclusion, a level of lipid unsaturation and eosinophilic peroxidase as well as LBs distribution among cell population mainly accounted for the biochemistry of eosinophils upon inflammation

    Chalcogen‐Bonding Interactions in Telluroether Heterocycles [Te(CH₂)ₘ]ₙ (n=1–4; m=3–7)

    No full text
    Abstract The Te⋅⋅⋅Te secondary bonding interactions (SBIs) in solid cyclic telluroethers were explored by preparing and structurally characterizing a series of [Te(CH₂)ₘ]ₙ (n=1–4; m=3–7) species. The SBIs in 1,7‐Te₂(CH₂)₁₀, 1,8‐Te₂(CH₂)₁₂, 1,5,9‐Te₃(CH₂)₉, 1,8,15‐Te₃(CH₂)₁₈, 1,7,13,19‐Te₄(CH₂)₂₀, 1,8,15,22‐Te₄(CH₂)₂₄ and 1,9,17,25‐Te₄(CH₂)₂₈ lead to tubular packing of the molecules, as has been observed previously for related thio‐ and selenoether rings. The nature of the intermolecular interactions was explored by solid‐state PBE0‐D3/pob‐TZVP calculations involving periodic boundary conditions. The molecular packing in 1,7,13,19‐Te₄(CH₂)₂₀, 1,8,15,22‐Te₄(CH₂)₂₄ and 1,9,17,25‐Te₄(CH₂)₂₈ forms infinite shafts. The electron densities at bond critical points indicate a narrow range of Te⋅⋅⋅Te bond orders of 0.12–0.14. The formation of the shafts can be rationalized by frontier orbital overlap and charge transfer

    Feasibility studies of multimodal nonlinear endoscopy using multicore fiber bundles for remote scanning from tissue sections to bulk organs

    No full text
    Abstract Here, we report on the development and application of a compact multi-core fiber optical probe for multimodal non-linear imaging, combining the label-free modalities of Coherent Anti-Stokes Raman Scattering, Second Harmonic Generation, and Two-Photon Excited Fluorescence. Probes of this multi-core fiber design avoid moving and voltage-carrying parts at the distal end, thus providing promising improved compatibility with clinical requirements over competing implementations. The performance characteristics of the probe are established using thin cryo-sections and artificial targets before the applicability to clinically relevant samples is evaluated using ex vivo bulk human and porcine intestine tissues. After image reconstruction to counteract the data’s inherently pixelated nature, the recorded images show high image quality and morpho-chemical conformity on the tissue level compared to multimodal non-linear images obtained with a laser-scanning microscope using a standard microscope objective. Furthermore, a simple yet effective reconstruction procedure is presented and demonstrated to yield satisfactory results. Finally, a clear pathway for further developments to facilitate a translation of the multimodal fiber probe into real-world clinical evaluation and application is outlined

    Characterization of a Library of Vitamin A-Functionalized Polymethacrylate-Based Nanoparticles for siRNA Delivery

    No full text
    A 60-membered library of vitamin A-functionalized P(MMA-stat-DMAEMA)-b-PPEGMA block copolymers was synthesized by RAFT polymerization. Subsequently, retinoic acid was coupled to hydroxyl groups present in the hydrophilic PPEGMA block. The polymers were investigated for their ability to encapsulate ribonucleic acids through nanoparticle (NP) formulation using the emulsion/solvent evaporation method. The localization of vitamin A in surface-near regions of the NPs was indicated by surface enhanced Raman spectroscopy, and the interaction of the NPs with a retinol binding protein was investigated by analytical ultracentrifugation. The systematic analysis of the NP library in terms of the encapsulation efficiency of the ribonucleic acids, the toxicity of the NPs, and the cellular uptake helped identifying suitable candidates for cellular internalization studies. The cell uptake was investigated by flow cytometry and fluorescence microscopy and reveals structure dependent uptake behavior of the examined particles. </p

    Chalcogen‐Bonding Interactions in Telluroether Heterocycles [Te(CH2)m]n (n=1-4; m=3-7)

    No full text
    The Te…Te secondary bonding interactions (SBI) in solid heterocyclic telluroethers were explored by preparing and structurally characterizing a series of [Te(CH2)m]n (n = 1‐4; m = 3‐7) species. The SBIs in 1,7‐Te2(CH2)10, 1,8‐Te2(CH2)12, 1,5,9‐Te3(CH2)9, 1,8,15‐Te3(CH2)18, 1,7,13,19‐Te4(CH2)20, 1,8,15,22‐Te4(CH2)24, and 1,9,17,25‐Te4(CH2)28 led to the tubular packing of the molecules, as has been observed previously for related thio‐ and selenoether rings. The nature of the intermolecular interactions was explored by solid‐state PBE0‐D3/pob‐TZVP calculations involving periodic boundary conditions. The packing of molecules in 1,7,13,19‐Te4(CH2)20, 1,8,15,22‐Te4(CH2)24, and 1,9,17,25‐Te4(CH2)28 form infinite shafts. The electron densities at bond critical points indicate a narrow range of Te…Te bond orders of 0.12‐0.14. The formation of the shafts can be rationalized by frontier orbital overlap and charge‐transfer.peerReviewe
    corecore