1,473 research outputs found
Remnant Fermi Surfaces in Photoemission
Recent experiments have introduced a new concept for analyzing the
photoemission spectra of correlated electrons -- the remnant Fermi surface
(rFs), which can be measured even in systems which lack a conventional Fermi
surface. Here, we analyze the rFs in a number of interacting electron models,
and find that the results fall into two classes. For systems with pairing
instabilities, the rFs is an accurate replica of the true Fermi surface. In the
presence of nesting instabilities, the rFs is a map of the resulting
superlattice Brillouin zone. The results suggest that the gap in Ca_2CuO_2Cl_2
is of nesting origin.Comment: 4 pages LaTex, 3 ps figure
Pinned Balseiro-Falicov Model of Tunneling and Photoemission in the Cuprates
The smooth evolution of the tunneling gap of Bi_2Sr_2CaCu_2O_8 with doping
from a pseudogap state in the underdoped cuprates to a superconducting state at
optimal and overdoping, has been interpreted as evidence that the pseudogap
must be due to precursor pairing. We suggest an alternative explanation, that
the smoothness reflects a hidden SO(N) symmetry near the (pi,0) points of the
Brillouin zone (with N = 3, 4, 5, or 6). Because of this symmetry, the
pseudogap could actually be due to any of a number of nesting instabilities,
including charge or spin density waves or more exotic phases. We present a
detailed analysis of this competition for one particular model: the pinned
Balseiro-Falicov model of competing charge density wave and (s-wave)
superconductivity. We show that most of the anomalous features of both
tunneling and photoemission follow naturally from the model, including the
smooth crossover, the general shape of the pseudogap phase diagram, the
shrinking Fermi surface of the pseudogap phase, and the asymmetry of the
tunneling gap away from optimal doping. Below T_c, the sharp peak at Delta_1
and the dip seen in the tunneling and photoemission near 2Delta_1 cannot be
described in detail by this model, but we suggest a simple generalization to
account for inhomogeneity, which does provide an adequate description. We show
that it should be possible, with a combination of photoemission and tunneling,
to demonstrate the extent of pinning of the Fermi level to the Van Hove
singularity. A preliminary analysis of the data suggests pinning in the
underdoped, but not in the overdoped regime.Comment: 18 pages LaTeX, 26 ps. figure
Closed-form expressions for particle relative velocities induced by turbulence
In this note we present complete, closed-form expressions for random relative
velocities between colliding particles of arbitrary size in nebula turbulence.
These results are exact for very small particles (those with stopping times
much shorter than the large eddy overturn time) and are also surprisingly
accurate in complete generality (that is, also apply for particles with
stopping times comparable to, or much longer than, the large eddy overturn
time). We note that some previous studies may have adopted previous simple
expressions, which we find to be in error regarding the size dependence in the
large particle regime.Comment: 8 pages, accepted as Research Note by A&
How different Fermi surface maps emerge in photoemission from Bi2212
We report angle-resolved photoemission spectra (ARPES) from the Fermi energy
() over a large area of the () plane using 21.2 eV and 32 eV
photons in two distinct polarizations from an optimally doped single crystal of
BiSrCaCuO (Bi2212), together with extensive
first-principles simulations of the ARPES intensities. The results display a
wide-ranging level of accord between theory and experiment and clarify how
myriad Fermi surface (FS) maps emerge in ARPES under various experimental
conditions. The energy and polarization dependences of the ARPES matrix element
help disentangle primary contributions to the spectrum due to the pristine
lattice from those arising from modulations of the underlying tetragonal
symmetry and provide a route for separating closely placed FS sheets in low
dimensional materials.Comment: submitted to PR
Systematic Low-Energy Effective Field Theory for Electron-Doped Antiferromagnets
In contrast to hole-doped systems which have hole pockets centered at , in lightly electron-doped antiferromagnets
the charged quasiparticles reside in momentum space pockets centered at
or . This has important consequences for
the corresponding low-energy effective field theory of magnons and electrons
which is constructed in this paper. In particular, in contrast to the
hole-doped case, the magnon-mediated forces between two electrons depend on the
total momentum of the pair. For the one-magnon exchange
potential between two electrons at distance is proportional to ,
while in the hole case it has a dependence. The effective theory
predicts that spiral phases are absent in electron-doped antiferromagnets.Comment: 25 pages, 7 figure
Phase Separation Models for Cuprate Stripe Arrays
An electronic phase separation model provides a natural explanation for a
large variety of experimental results in the cuprates, including evidence for
both stripes and larger domains, and a termination of the phase separation in
the slightly overdoped regime, when the average hole density equals that on the
charged stripes. Several models are presented for charged stripes, showing how
density waves, superconductivity, and strong correlations compete with quantum
size effects (QSEs) in narrow stripes. The energy bands associated with the
charged stripes develop in the middle of the Mott gap, and the splitting of
these bands can be understood by considering the QSE on a single ladder.Comment: significant revisions: includes island phase, 16 eps figures, revte
Recommended from our members
The Beagle 2 optical microscope
Introduction to the Beagle2 optical microscope
Flux Phase as a Dynamic Jahn-Teller Phase: Berryonic Matter in the Cuprates?
There is considerable evidence for some form of charge ordering on the
hole-doped stripes in the cuprates, mainly associated with the low-temperature
tetragonal phase, but with some evidence for either charge density waves or a
flux phase, which is a form of dynamic charge-density wave. These three states
form a pseudospin triplet, demonstrating a close connection with the E X e
dynamic Jahn-Teller effect, suggesting that the cuprates constitute a form of
Berryonic matter. This in turn suggests a new model for the dynamic Jahn-Teller
effect as a form of flux phase. A simple model of the Cu-O bond stretching
phonons allows an estimate of electron-phonon coupling for these modes,
explaining why the half breathing mode softens so much more than the full
oxygen breathing mode. The anomalous properties of provide a coupling
(correlated hopping) which acts to stabilize density wave phases.Comment: Major Revisions: includes comparisons with specific cuprate phonon
modes, 16 eps figures, revte
Instability of Anisotropic Fermi Surfaces in Two Dimensions
The effect of strong anisotropy on the Fermi line of a system of correlated
electrons is studied in two space dimensions, using renormalization group
techniques. Inflection points change the scaling exponents of the couplings,
enhancing the instabilities of the system. They increase the critical dimension
for non Fermi liquid behavior, from 1 to 3/2. Assuming that, in the absence of
nesting, the dominant instability is towards a superconducting ground state,
simple rules to discern between d-wave and extended s-wave symmetry of the
order parameter are given.Comment: 5 pages, revte
Superconducting and pseudogap phases from scaling near a Van Hove singularity
We study the quantum corrections to the Fermi energy of a two-dimensional
electron system, showing that it is attracted towards the Van Hove singularity
for a certain range of doping levels. The scaling of the Fermi level allows to
cure the infrared singularities left in the BCS channel after renormalization
of the leading logarithm near the divergent density of states. A phase of
d-wave superconductivity arises beyond the point of optimal doping
corresponding to the peak of the superconducting instability. For lower doping
levels, the condensation of particle-hole pairs due to the nesting of the
saddle points takes over, leading to the opening of a gap for quasiparticles in
the neighborhood of the singular points.Comment: 4 pages, 6 Postscript figures, the physical discussion of the results
has been clarifie
- …