32 research outputs found

    Recessive Spondylocarpotarsal Synostosis Syndrome Due to Compound Heterozygosity for Variants in MYH3

    Get PDF
    Spondylocarpotarsal synostosis syndrome (SCTS) is characterized by intervertebral fusions and fusion of the carpal and tarsal bones. Biallelic mutations in FLNB cause this condition in some families, whereas monoallelic variants in MYH3, encoding embryonic heavy chain myosin 3, have been implicated in dominantly inherited forms of the disorder. Here, five individuals without FLNB mutations from three families were hypothesized to be affected by recessive SCTS on account of sibling recurrence of the phenotype. Initial whole-exome sequencing (WES) showed that all five were heterozygous for one of two independent splice-site variants in MYH3. Despite evidence indicating that three of the five individuals shared two allelic haplotypes encompassing MYH3, no second variant could be located in the WES datasets. Subsequent genome sequencing of these three individuals demonstrated a variant altering a 5' UTR splice donor site (rs557849165 in MYH3) not represented by exome-capture platforms. When the cohort was expanded to 16 SCTS-affected individuals without FLNB mutations, nine had truncating mutations transmitted by unaffected parents, and six inherited the rs557849165 variant in trans, an observation at odds with the population allele frequency for this variant. The rs557849165 variant disrupts splicing in the 5' UTR but is still permissive of MYH3 translational initiation, albeit with reduced efficiency. Although some MYH3 variants cause dominant SCTS, these data indicate that others (notably truncating variants) do not, except in the context of compound heterozygosity for a second hypomorphic allele. These observations make genetic diagnosis challenging in the context of simplex presentations of the disorder

    Mob2 Insufficiency Disrupts Neuronal Migration in the Developing Cortex

    Get PDF
    Disorders of neuronal mispositioning during brain development are phenotypically heterogeneous and their genetic causes remain largely unknown. Here, we report biallelic variants in a Hippo signaling factor-MOB2-in a patient with one such disorder, periventricular nodular heterotopia (PH). Genetic and cellular analysis of both variants confirmed them to be loss-of-function with enhanced sensitivity to transcript degradation via nonsense mediated decay (NMD) or increased protein turnover via the proteasome. Knockdown of Mob2 within the developing mouse cortex demonstrated its role in neuronal positioning. Cilia positioning and number within migrating neurons was also impaired with comparable defects detected following a reduction in levels of an upstream modulator of Mob2 function, Dchs1, a previously identified locus associated with PH. Moreover, reduced Mob2 expression increased phosphorylation of Filamin A, an actin cross-linking protein frequently mutated in cases of this disorder. These results reveal a key role for Mob2 in correct neuronal positioning within the developing cortex and outline a new candidate locus for PH development

    Prevention of child behavior problems through universal implementation of a group behavioral family intervention.

    Get PDF
    The aim of this mental health promotion initiative was to evaluate the effectiveness of a universally delivered group behavioral family intervention (BFI) in preventing behavior problems in children. This study investigates the transferability of an efficacious clinical program to a universal prevention intervention delivered through child and community health services targeting parents of preschoolers within a metropolitan health region. A quasiexperimental two-group (BFI, n=804 vs. Comparison group, n=806) longitudinal design followed preschool aged children and their parents over a 2-year period. BFI was associated with significant reductions in parent-reported levels of dysfunctional parenting and parent-reported levels of child behavior problems. Effect sizes on child behavior problems ranged from large (.83) to moderate (.47). Positive and significant effects were also observed in parent mental health, marital adjustment, and levels of child rearing conflict. Findings are discussed with respect to their implication for significant population reductions in child behavior problems as well as the pragmatic challenges for prevention science in encouraging both the evaluation and uptake of preventive initiatives in real world settings

    Intragenic Deletions in FLNB Are Part of the Mutational Spectrum Causing Spondylocarpotarsal Synostosis Syndrome

    No full text
    Spondylocarpotarsal synostosis syndrome (SCT) is characterized by vertebral fusions, a disproportionately short stature, and synostosis of carpal and tarsal bones. Pathogenic variants in FLNB, MYH3, and possibly in RFLNA, have been reported to be responsible for this condition. Here, we present two unrelated individuals presenting with features typical of SCT in which Sanger sequencing combined with whole genome sequencing identified novel, homozygous intragenic deletions in FLNB (c.1346-1372_1941+389del and c.3127-353_4223-1836del). Both deletions remove several consecutive exons and are predicted to result in a frameshift. To our knowledge, this is the first time that large structural variants in FLNB have been reported in SCT, and thus our findings add to the classes of variation that can lead to this disorder. These cases highlight the need for copy number sensitive methods to be utilized in order to be comprehensive in the search for a molecular diagnosis in individuals with a clinical diagnosis of SCT

    Genetic investigation into an increased susceptibility to biliary atresia in an extended New Zealand Māori family

    Get PDF
    Abstract Background Biliary atresia (BA), a fibrosing disorder of the developing biliary tract leading to liver failure in infancy, has an elevated incidence in indigenous New Zealand (NZ) Māori. We investigated a high rate of BA in a group of children (n = 12) belonging to a single Māori iwi (or ‘tribe’, related through a remote ancestor). Methods Population and geographical data was used to estimate the rate of BA in Māori sub-groups, and a pedigree linking most of the affected children was constructed from oral and documented history. Array genotyping was used to examine hypotheses about the inheritance of a possible genetic risk factor, and the history of the affected population, and Exome Sequencing to search for candidate genes. Results Most of these affected children (n = 7) link to a self-reported pedigree and carry a 50-fold increase in BA risk over unrelated Māori (χ2 = 296P  0.63). Genome-wide quantitation of intervals of contiguous, homozygous-by-state markers reached a similar conclusion (F (2,399) = 1.99, P = 0.138). Principal component analysis and investigation with STRUCTURE found no evidence of increased allele frequency of either a recessive variant, or additive, low-risk variants due to reproductive isolation. To identify candidate causal factors, Exome Sequencing datasets were scrutinised for shared rare coding variants across 8 affected individuals. No rare, non-synonymous, phylogenetically conserved variants were common to 6 or more affected children. Conclusion The substantially elevated risk for development of BA in this subgroup could be mediated by genetic factors, but the iwi exhibits no properties indicative of recent or remote reproductive isolation. Resolution of any risk loci may rely on extensive genomic sequencing studies in this iwi or investigation of other mechnaisms such as copy number variation

    Deletion of Exon 1 in AMER1 in Osteopathia Striata with Cranial Sclerosis

    No full text
    Osteopathia striata with cranial sclerosis (OSCS) is an X-linked dominant condition characterised by metaphyseal striations, macrocephaly, cleft palate, and developmental delay in affected females. Males have a more severe phenotype with multi-organ malformations, and rarely survive. To date, only frameshift and nonsense variants in exon 2, the single coding exon of AMER1, or whole gene deletions have been reported to cause OSCS. In this study, we describe two families with phenotypic features typical of OSCS. Exome sequencing and multiplex ligation-dependent probe amplification (MLPA) did not identify pathogenic variants in AMER1. Therefore, genome sequencing was employed which identified two deletions containing the non-coding exon 1 of AMER1 in the families. These families highlight the importance of considering variants or deletions of upstream non-coding exons in conditions such as OSCS, noting that often such exons are not captured on probe or enrichment-based platforms because of their high G/C content

    Mob2 Insufficiency Disrupts Neuronal Migration in the Developing Cortex

    Get PDF
    Disorders of neuronal mispositioning during brain development are phenotypically heterogeneous and their genetic causes remain largely unknown. Here, we report biallelic variants in a Hippo signaling factor-MOB2-in a patient with one such disorder, periventricular nodular heterotopia (PH). Genetic and cellular analysis of both variants confirmed them to be loss-of-function with enhanced sensitivity to transcript degradation via nonsense mediated decay (NMD) or increased protein turnover via the proteasome. Knockdown of Mob2 within the developing mouse cortex demonstrated its role in neuronal positioning. Cilia positioning and number within migrating neurons was also impaired with comparable defects detected following a reduction in levels of an upstream modulator of Mob2 function, Dchs1, a previously identified locus associated with PH. Moreover, reduced Mob2 expression increased phosphorylation of Filamin A, an actin cross-linking protein frequently mutated in cases of this disorder. These results reveal a key role for Mob2 in correct neuronal positioning within the developing cortex and outline a new candidate locus for PH development

    Mob2 Insufficiency Disrupts Neuronal Migration in the Developing Cortex

    No full text
    Disorders of neuronal mispositioning during brain development are phenotypically heterogeneous and their genetic causes remain largely unknown. Here, we report biallelic variants in a Hippo signaling factor—MOB2—in a patient with one such disorder, periventricular nodular heterotopia (PH). Genetic and cellular analysis of both variants confirmed them to be loss-of-function with enhanced sensitivity to transcript degradation via nonsense mediated decay (NMD) or increased protein turnover via the proteasome. Knockdown of Mob2 within the developing mouse cortex demonstrated its role in neuronal positioning. Cilia positioning and number within migrating neurons was also impaired with comparable defects detected following a reduction in levels of an upstream modulator of Mob2 function, Dchs1, a previously identified locus associated with PH. Moreover, reduced Mob2 expression increased phosphorylation of Filamin A, an actin cross-linking protein frequently mutated in cases of this disorder. These results reveal a key role for Mob2 in correct neuronal positioning within the developing cortex and outline a new candidate locus for PH development
    corecore