802 research outputs found

    The maximally entangled symmetric state in terms of the geometric measure

    Full text link
    The geometric measure of entanglement is investigated for permutation symmetric pure states of multipartite qubit systems, in particular the question of maximum entanglement. This is done with the help of the Majorana representation, which maps an n qubit symmetric state to n points on the unit sphere. It is shown how symmetries of the point distribution can be exploited to simplify the calculation of entanglement and also help find the maximally entangled symmetric state. Using a combination of analytical and numerical results, the most entangled symmetric states for up to 12 qubits are explored and discussed. The optimization problem on the sphere presented here is then compared with two classical optimization problems on the S^2 sphere, namely Toth's problem and Thomson's problem, and it is observed that, in general, they are different problems.Comment: 18 pages, 15 figures, small corrections and additions to contents and reference

    Opening up the Quantum Three-Box Problem with Undetectable Measurements

    Get PDF
    One of the most striking features of quantum mechanics is the profound effect exerted by measurements alone. Sophisticated quantum control is now available in several experimental systems, exposing discrepancies between quantum and classical mechanics whenever measurement induces disturbance of the interrogated system. In practice, such discrepancies may frequently be explained as the back-action required by quantum mechanics adding quantum noise to a classical signal. Here we implement the 'three-box' quantum game of Aharonov and Vaidman in which quantum measurements add no detectable noise to a classical signal, by utilising state-of-the-art control and measurement of the nitrogen vacancy centre in diamond. Quantum and classical mechanics then make contradictory predictions for the same experimental procedure, however classical observers cannot invoke measurement-induced disturbance to explain this discrepancy. We quantify the residual disturbance of our measurements and obtain data that rule out any classical model by > 7.8 standard deviations, allowing us for the first time to exclude the property of macroscopic state-definiteness from our system. Our experiment is then equivalent to a Kochen-Spekker test of quantum non-contextuality that successfully addresses the measurement detectability loophole

    Gluon Propagator on Coarse Lattices in Laplacian Gauges

    Get PDF
    The Laplacian gauge is a nonperturbative gauge fixing that reduces to Landau gauge in the asymptotic limit. Like Landau gauge, it respects Lorentz invariance, but it is free of Gribov copies; the gauge fixing is unambiguous. In this paper we study the infrared behavior of the lattice gluon propagator in Laplacian gauge by using a variety of lattices with spacings from a=0.125a = 0.125 to 0.35 fm, to explore finite volume and discretization effects. Three different implementations of the Laplacian gauge are defined and compared. The Laplacian gauge propagator has already been claimed to be insensitive to finite volume effects and this is tested on lattices with large volumes.Comment: RevTex 4.0, 14 pages, 9 colour figures; Correction to Reference

    Work-Unit Absenteeism: Effects of Satisfaction, Commitment, Labor Market Conditions, and Time

    Get PDF
    Prior research is limited in explaining absenteeism at the unit level and over time. We developed and tested a model of unit-level absenteeism using five waves of data collected over six years from 115 work units in a large state agency. Unit-level job satisfaction, organizational commitment, and local unemployment were modeled as time-varying predictors of absenteeism. Shared satisfaction and commitment interacted in predicting absenteeism but were not related to the rate of change in absenteeism over time. Unit-level satisfaction and commitment were more strongly related to absenteeism when units were located in areas with plentiful job alternatives

    Additivity and non-additivity of multipartite entanglement measures

    Full text link
    We study the additivity property of three multipartite entanglement measures, i.e. the geometric measure of entanglement (GM), the relative entropy of entanglement and the logarithmic global robustness. First, we show the additivity of GM of multipartite states with real and non-negative entries in the computational basis. Many states of experimental and theoretical interests have this property, e.g. Bell diagonal states, maximally correlated generalized Bell diagonal states, generalized Dicke states, the Smolin state, and the generalization of D\"{u}r's multipartite bound entangled states. We also prove the additivity of other two measures for some of these examples. Second, we show the non-additivity of GM of all antisymmetric states of three or more parties, and provide a unified explanation of the non-additivity of the three measures of the antisymmetric projector states. In particular, we derive analytical formulae of the three measures of one copy and two copies of the antisymmetric projector states respectively. Third, we show, with a statistical approach, that almost all multipartite pure states with sufficiently large number of parties are nearly maximally entangled with respect to GM and relative entropy of entanglement. However, their GM is not strong additive; what's more surprising, for generic pure states with real entries in the computational basis, GM of one copy and two copies, respectively, are almost equal. Hence, more states may be suitable for universal quantum computation, if measurements can be performed on two copies of the resource states. We also show that almost all multipartite pure states cannot be produced reversibly with the combination multipartite GHZ states under asymptotic LOCC, unless relative entropy of entanglement is non-additive for generic multipartite pure states.Comment: 45 pages, 4 figures. Proposition 23 and Theorem 24 are revised by correcting a minor error from Eq. (A.2), (A.3) and (A.4) in the published version. The abstract, introduction, and summary are also revised. All other conclusions are unchange

    Geometric Entanglement of Symmetric States and the Majorana Representation

    Full text link
    Permutation-symmetric quantum states appear in a variety of physical situations, and they have been proposed for quantum information tasks. This article builds upon the results of [New J. Phys. 12, 073025 (2010)], where the maximally entangled symmetric states of up to twelve qubits were explored, and their amount of geometric entanglement determined by numeric and analytic means. For this the Majorana representation, a generalization of the Bloch sphere representation, can be employed to represent symmetric n qubit states by n points on the surface of a unit sphere. Symmetries of this point distribution simplify the determination of the entanglement, and enable the study of quantum states in novel ways. Here it is shown that the duality relationship of Platonic solids has a counterpart in the Majorana representation, and that in general maximally entangled symmetric states neither correspond to anticoherent spin states nor to spherical designs. The usability of symmetric states as resources for measurement-based quantum computing is also discussed.Comment: 10 pages, 8 figures; submitted to Lecture Notes in Computer Science (LNCS

    Spectral Analysis of the Primary Flight Focal Plane Arrays for the Thermal Infrared Sensor

    Get PDF
    Thermal Infrared Sensor (TIRS) is a (1) New longwave infrared (10 - 12 micron) sensor for the Landsat Data Continuity Mission, (2) 185 km ground swath; 100 meter pixel size on ground, (3) Pushbroom sensor configuration. Issue of Calibration are: (1) Single detector -- only one calibration, (2) Multiple detectors - unique calibration for each detector -- leads to pixel-to-pixel artifacts. Objectives are: (1) Predict extent of residual striping when viewing a uniform blackbody target through various atmospheres, (2) Determine how different spectral shapes affect the derived surface temperature in a realistic synthetic scene
    corecore