236 research outputs found

    DEVELOPMENT OF ACTIONABLE METRICS FOR WATER LOSS REDUCTION IN WATER DISTRIBUTION SYSTEMS

    Get PDF
    Many water utilities lose significant amounts of treated water (and the revenue that does with it) through pipe breaks or undetected leaks in their underground distribution networks. To help utilities understand their water loss, the American Water Works Association developed a Water Audit Software program which calculates lost volumes and system performance indicators based on input supplied by the water utility. To make the Water Audit Software a more useful tool for a greater number of utilities and the states that mandate auditing, additional fields should be added to the Water Audit Software to collect data about system pipe materials, main line breaks categorized by pipe material, and their average break isolation and repair times. This data should be used to calculate two new PIs: 1) a dimensionless Break Rate Index (BRI) which compares system main line break data to published national break averages, and 2) a dimensionless Repair Time Index (RTI) that compares system main break repair time averages to best practice repair times. Including the BRI and RTI in the audit will identify slow repair times and the types of pipe in a system that have the highest failure rates, thereby providing utilities with immediately useful, actionable information upon the completion of the audit that can be used to improve the distribution system and reduce real water loss. It would also result in the creation of a large-scale main break and repair data set that could be used by local, regional and/or national authorities to develop utility standards

    Optical Sensing of Combustion Instabilities in Gas Turbines

    Get PDF
    In a continuing program of research and development, a system has been demonstrated that makes high-speed measurements of thermal infrared radiance from gas-turbine engine exhaust streams. When a gas-turbine engine is operated under conditions that minimize the emission of pollutants, there is a risk of crossing the boundary from stable to unstable combustion. Combustion instability can lead to engine damage and even catastrophic failure. Sensor systems of the type under development could provide valuable data during the development testing of gas-turbine engines or of engine components. A system of the type under development makes high-speed measurements of thermal infrared radiance from the engine exhaust stream. The sensors of this system can be mounted outside the engine, which eliminates the need for engine case penetrations typical with other engine dynamics monitors. This is an important advantage in that turbine-engine manufacturers consider such penetrations to be very undesirable. A prototype infrared sensor system has been built and demonstrated on a turbine engine. This system includes rugged and inexpensive near-infrared sensors and filters that select wavelengths of infrared radiation for high sensitivity. In experiments, low-frequency signatures were consistently observed in the detector outputs. Under some conditions, the signatures also included frequency components having one or two radiance cycles per engine revolution. Although it has yet to be verified, it is thought that the low-frequency signatures may be associated with bulk-mode combustion instabilities or flow instabilities in the compressor section of the engine, while the engine- revolution-related signatures may be indicative of mechanical problems in the engine. The system also demonstrated the ability to detect transient high-radiance events. These events indicate hot spots in the exhaust stream and were found to increase in frequency during engine acceleration

    Landsat Data Continuity Mission Expected Instrument Performance

    Get PDF
    The Landsat Data Continuity Mission (LDCM) is scheduled for a December 2012 launch date. LDCM is being managed by an interagency partnership between NASA and the U.S. Geological Survey (USGS). In order to provide the necessary spectral coverage of the visible through shortwave-infrared (SWIR) and the thermal-infrared (TIR), the satellite will carry two sensors. The Operational Land Imager (OLI) will collect data for nine visible to shortwave spectral bands with a spatial resolution of 30 m (with a 15 m panchromatic band). The Thermal Infrared Sensor (TIRS) will collect coincident image data for two TIR bands with a spatial resolution of 100 m. The OLI is fully assembled and tested and has been shipped by it's manufacturer, Ball Aerospace and Technology Corporation, to the Orbital Sciences Corporation (Orbital) facility where it is being integrated onto the LDCM spacecraft. Pre-launch testing indicates that OLI will meet all performance specification with margin. TIRS is in development at the NASA Goddard Space F!ight Center (GSFC) and is in final testing before shipping to the Orbital facility in January, 2012. The presentation will describe the LDCM satellite instrument systems, present pre-launch performance data for OLI and TIRS, and present simulated images to highlight notable features and expected imaging performance

    Contemporary Problems of Drug Abuse - II. Saturday Morning

    Get PDF

    Landsat Data Continuity Mission - Launch Fever

    Get PDF
    The year 2013 will be an exciting period for those that study the Earth land surface from space, particularly those that observe and characterize land cover, land use, and the change of cover and use over time. Two new satellite observatories will be launched next year that will enhance capabilities for observing the global land surface. The United States plans to launch the Landsat Data Continuity Mission (LDCM) in January. That event will be followed later in the year by the European Space Agency (ESA) launch of the first Sentinel 2 satellite. Considered together, the two satellites will increase the frequency of opportunities for viewing the land surface at a scale where human impact and influence can be differentiated from natural change. Data from the two satellites will provide images for similar spectral bands and for comparable spatial resolutions with rigorous attention to calibration that will facilitate cross comparisons. This presentation will provide an overview of the LDCM satellite system and report its readiness for the January launch

    Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug

    Get PDF
    Current drug eluting stent (DES) technology is not optimized with regard to the pharmacokinetics of drug delivery. A novel, absorbable-coating sirolimus-eluting stent (AC-SES) was evaluated for its capacity to deliver drug more evenly within the intimal area rather than concentrating drug around the stent struts and for its ability to match coating erosion with drug release. The coating consisted of absorbable poly-lactide-co-glycolic acid (PLGA) and crystalline sirolimus deposited by a dry-powder electrostatic process. The AC-SES demonstrated enhanced drug stability under simulated use conditions and consistent drug delivery balanced with coating erosion in a porcine coronary implant model. The initial drug burst was eliminated and drug release was sustained after implantation. The coating was absorbed within 90 days. Following implantation into porcine coronary arteries the AC-SES coating is distributed in the surrounding intimal tissue over the course of several weeks. Computational modeling of drug delivery characteristics demonstrates how distributed coating optimizes the load of drug immediately around each stent strut and extends drug delivery between stent struts. The result was a highly efficient arterial uptake of drug with superior performance to a clinical bare metal stent (BMS). Neointimal thickness (0.17 ± 0.07 mm vs. 0.28 ± 0.11 mm) and area percent stenosis (22 ± 9% vs. 35 ± 12%) were significantly reduced (p < 0.05) by the AC-SES compared to the BMS 30 days after stent implantation in an overlap configuration in porcine coronary arteries. Inflammation was significantly reduced in the AC-SES compared to the BMS at both 30 and 90 days after implantation. Biocompatible, rapidly absorbable stent coatings enable the matching of drug release with coating erosion and provide for the controlled migration of coating material into tissue to reduce vicissitudes in drug tissue levels, optimizing efficacy and reducing potential toxicity.Micell Technologies, Inc.National Institutes of Health (U.S.) (R01 GM49039

    Methodological Standardization for the Pre-Clinical Evaluation of Renal Sympathetic Denervation

    Get PDF
    Transcatheter ablation of renal autonomic nerves is a viable option for the treatment of resistant arterial hypertension; however, structured pre-clinical evaluation with standardization of analytical procedures remains a clear gap in this field. Here we discuss the topics relevant to the pre-clinical model for the evaluation of renal denervation (RDN) devices and report methodologies and criteria toward standardization of the safety and efficacy assessment, including histopathological evaluations of the renal artery, periarterial nerves, and associated periadventitial tissues. The pre-clinical swine renal artery model can be used effectively to assess both the safety and efficacy of RDN technologies. Assessment of the efficacy of RDN modalities primarily focuses on the determination of the depth of penetration of treatment-related injury (e.g., necrosis) of the periarterial tissues and its relationship (i.e., location and distance) and the effect on the associated renal nerves and the correlation thereof with proxy biomarkers including renal norepinephrine concentrations and nerve-specific immunohistochemical stains (e.g., tyrosine hydroxylase). The safety evaluation of RDN technologies involves assessing for adverse effects on tissues local to the site of treatment (i.e., on the arterial wall) as well as tissues at a distance (e.g., soft tissue, veins, arterial branches, skeletal muscle, adrenal gland, ureters). Increasing experience will help to create a standardized means of examining all arterial beds subject to ablative energy and in doing so enable us to proceed to optimize the development and assessment of these emerging technologies
    corecore