326 research outputs found

    BLAST Autonomous Daytime Star Cameras

    Get PDF
    We have developed two redundant daytime star cameras to provide the fine pointing solution for the balloon-borne submillimeter telescope, BLAST. The cameras are capable of providing a reconstructed pointing solution with an absolute accuracy < 5 arcseconds. They are sensitive to stars down to magnitudes ~ 9 in daytime float conditions. Each camera combines a 1 megapixel CCD with a 200 mm f/2 lens to image a 2 degree x 2.5 degree field of the sky. The instruments are autonomous. An internal computer controls the temperature, adjusts the focus, and determines a real-time pointing solution at 1 Hz. The mechanical details and flight performance of these instruments are presented.Comment: 8 pages, 6 figures, 1 table. To be published in conference proceedings for the "Ground-based and Airborne Instrumentation for Astronomy" part of the SPIE Astronomical Telescopes and Instrumentation Symposium that will be held 24-31 May 2006 in Orlando, F

    Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip

    Get PDF
    Quantum phase estimation is a fundamental subroutine in many quantum algorithms, including Shor's factorization algorithm and quantum simulation. However, so far results have cast doubt on its practicability for near-term, non-fault tolerant, quantum devices. Here we report experimental results demonstrating that this intuition need not be true. We implement a recently proposed adaptive Bayesian approach to quantum phase estimation and use it to simulate molecular energies on a Silicon quantum photonic device. The approach is verified to be well suited for pre-threshold quantum processors by investigating its superior robustness to noise and decoherence compared to the iterative phase estimation algorithm. This shows a promising route to unlock the power of quantum phase estimation much sooner than previously believed

    Experimental Quantum Hamiltonian Learning

    Get PDF
    Efficiently characterising quantum systems, verifying operations of quantum devices and validating underpinning physical models, are central challenges for the development of quantum technologies and for our continued understanding of foundational physics. Machine-learning enhanced by quantum simulators has been proposed as a route to improve the computational cost of performing these studies. Here we interface two different quantum systems through a classical channel - a silicon-photonics quantum simulator and an electron spin in a diamond nitrogen-vacancy centre - and use the former to learn the latter's Hamiltonian via Bayesian inference. We learn the salient Hamiltonian parameter with an uncertainty of approximately 10510^{-5}. Furthermore, an observed saturation in the learning algorithm suggests deficiencies in the underlying Hamiltonian model, which we exploit to further improve the model itself. We go on to implement an interactive version of the protocol and experimentally show its ability to characterise the operation of the quantum photonic device. This work demonstrates powerful new quantum-enhanced techniques for investigating foundational physical models and characterising quantum technologies

    Does predation control the diapausing stock of Calanus finmarchicus in the Gulf of Maine?

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wiebe, P., Baumgartner, M., Copley, N., Lawson, G., Davis, C., Ji, R., & Greene, C. Does predation control the diapausing stock of Calanus finmarchicus in the Gulf of Maine? Progress In Oceanography, 206, (2022): 102861, https://doi.org/10.1016/j.pocean.2022.102861.The variability of zooplankton populations is controlled by external and internal forcing, with the former being principally large-scale changes in circulation, and the latter being driven by in situ growth, competition, and predation. Assessing the relative importance of these forcings is challenging and requires analyses of multifaceted observational data. As part of the U.S. GLOBEC Georges Bank program, a series of cruises were conducted in fall 1997, 1998, and 1999 to survey diapausing populations of Calanus finmarchicus and their predators in Wilkinson, Jordan, and Georges Basins of the Gulf of Maine. Station and underway sampling were conducted using net (1 m2 MOCNESS) and bioacoustic (BIOMAPER-II) systems, respectively, to acquire vertically stratified data for zooplankton biomass, taxonomic, size, and life-stage composition, together with associated environmental data. The results show that the autumn diapausing C. finmarchicus abundance was much lower in 1998 than in 1997 or 1999, even though the overall zooplankton biomass levels were comparable between the three years. The size frequency distribution of the diapausing individuals had a bi-modal pattern in 1997 and 1999, but a single mode in 1998, indicating the demise of an early cohort of the diapausing stock. The relative biomass and computed energy demand of potential invertebrate predators (euphausiids, decapods, medusae, and siphonophores) was found to be higher in 1998 and could account for the missing C. finmarchicus cohort. Evidence collected from this study supports the hypothesis that local predation has the potential to control the diapausing stock of C. finmarchicus in the Gulf of Maine.RJ received support from the Northeast US Shelf Long Term Ecological Research (NES-LTER) project (NSF OCE-1655686) and the US MBON Gulf of Maine project to NERACOOS (NOPP award NA19NOS0120197 and BOEMUMaine Cooperative Agreement M19AC00022) for analyzing the size data and working on the manuscript. Research support was provided by the US GLOBEC Georges Bank Program through the CILER Cooperative Agreement NA-67RJO148 (NOAA Coastal Ocean Program)

    Determining dominant scatterers of sound in mixed zooplankton populations

    Get PDF
    Author Posting. © Acoustical Society of America, 2007. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 122 (2007): 3304-3326, doi:10.1121/1.2793613.High-frequency acoustic scattering techniques have been used to investigate dominant scatterers in mixed zooplankton populations. Volume backscattering was measured in the Gulf of Maine at 43, 120, 200, and 420 kHz. Zooplankton composition and size were determined using net and video sampling techniques, and water properties were determined using conductivity, temperature, and depth sensors. Dominant scatterers have been identified using recently developed scattering models for zooplankton and microstructure. Microstructure generally did not contribute to the scattering. At certain locations, gas-bearing zooplankton, that account for a small fraction of the total abundance and biomass, dominated the scattering at all frequencies. At these locations, acoustically inferred size agreed well with size determined from the net samples. Significant differences between the acoustic, net, and video estimates of abundance for these zooplankton are most likely due to limitations of the net and video techniques. No other type of biological scatterer ever dominated the scattering at all frequencies. Copepods, fluid-like zooplankton that account for most of the abundance and biomass, dominated at select locations only at the highest frequencies. At these locations, acoustically inferred abundance agreed well with net and video estimates. A general approach for the difficult problem of interpreting high-frequency acoustic scattering in mixed zooplankton populations is described.This research was supported in part by the U.S. GLOBEC program, NOAA (Grant nos. NA17RJ1223 and NA67RJ0148), the James S. Cole and Cecily C. Selby Endowed Funds, the Penzance Endowed Fund for Support of Assistant Scientists, and the Adams Chair at the Woods Hole Oceanographic Institution. A selected number of focused experiments were also funded by the ONR (Grant No. N00014-98-1-0362)

    Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing

    Get PDF
    Motivated by their necessity for most fault-tolerant quantum computation schemes, we formulate a resource theory for magic states. First, we show that robustness of magic is a well-behaved magic monotone that operationally quantifies the classical simulation overhead for a Gottesman-Knill-type scheme using ancillary magic states. Our framework subsequently finds immediate application in the task of synthesizing non-Clifford gates using magic states. When magic states are interspersed with Clifford gates, Pauli measurements, and stabilizer ancillas—the most general synthesis scenario—then the class of synthesizable unitaries is hard to characterize. Our techniques can place nontrivial lower bounds on the number of magic states required for implementing a given target unitary. Guided by these results, we have found new and optimal examples of such synthesis

    Trajectories of health-related quality of life in children with epilepsy: A cohort study

    Get PDF
    Purpose Little is known about subgroups of children with epilepsy who may experience less favorable outcomes over time. The objectives of this study were to document trajectories of health-related quality of life (HRQL) and to identify predictors of the trajectory group in children with new-onset epilepsy. Methods Data were obtained from the Health Related Quality of Life in Children with Epilepsy Study, a prospective multisite study of children 4-12 years old with new-onset epilepsy followed for 24 months. Health-related quality of life was measured using the Quality of Life in Childhood Epilepsy questionnaire. Trajectories of HRQL were investigated using latent class trajectory modeling. Multinomial logistic regression was used to identify child, parent, and family predictors of HRQL trajectories. Key Findings A total of 374 families responded at baseline and 283 (76%) completed the study. Five HRQL trajectories were observed: low-increasing (4%), moderate-decreasing (12%), moderate-increasing (22%), high-increasing (32%), and high-stable (30%). Many children in the low-increasing, moderate-increasing, high-increasing, and high-stable had clinically meaningful improvements in HRQL: 82%, 47%, 63%, and 44%, respectively. In contrast, the majority of children in the moderate-decreasing group (56%) experienced clinically meaningful declines in their HRQL. Factors predicting trajectories were number of antiepileptic drugs prescribed, presence of comorbid behavior or cognitive problems, parent depression, and family functioning and demands. Significance Results suggested that children with epilepsy are not homogenous but rather consist of groups with different trajectories and unique predictors of HRQL. Problems associated with child behavior and cognition were the strongest predictors identified. Given that several risk factors are modifiable, it is important to examine these as potential targets within a family-centered framework to improve HRQL of children with new-onset epilepsy. © Wiley Periodicals, Inc. © 2013 International League Against Epilepsy

    Quality of life in children with new-onset epilepsy; A 2-year prospective cohort study

    Get PDF
    Objectives: To assess health-related quality of life (HRQL) over 2 years in children 4-12 years old with new-onset epilepsy and risk factors. Methods: Data are from a multicenter prospective cohort study, the Health-Related Quality of Life Study in Children with Epilepsy Study (HERQULES). Parents reported on children\u27s HRQL and family factors and neurologists on clinical characteristics 4 times. Mean subscale and summary scores were computed for HRQL. Individual growth curve models identified trajectories of change in HRQL scores. Multiple regression identified baseline risk factors for HRQL 2 years later. Results: A total of 374 (82%) questionnaires were returned postdiagnosis and 283 (62%) of eligible parents completed all 4. Growth rates for HRQL summary scores were most rapid during the first 6 months and then stabilized. About one-half experienced clinically meaningful improvements in HRQL, one-third maintained their same level, and one-fifth declined. Compared with the general population, at 2 years our sample scored significantly lower on one-third of CHQ subscales and the psychosocial summary. After controlling for baseline HRQL, cognitive problems, poor family functioning, and high family demands were risk factors for poor HRQL 2 years later. Conclusions: On average, HRQL was relatively good but with highly variable individual trajectories. At least one-half did not experience clinically meaningful improvements or declined over 2 years. Cognitive problems were the strongest risk factor for compromised HRQL 2 years after diagnosis and may be largely responsible for declines in the HRQL of children newly diagnosed with epilepsy. © 2012 by AAN Enterprises, Inc
    corecore