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Abstract: We demonstrate a Bayesian approach for practical and robust implementation
of the quantum phase estimation algorithm. We implement it on a reconfigurable Silicon
quantum photonic device, demonstrating its importance for future quantum applications.

1. Introduction

Quantum computers promise to revolutionize scientific computing by providing exponential speedups over their clas-
sical counterparts. This prospect stimulated a lot of interest in the scientific community and great efforts are being
made towards the realization of quantum machines able to outperform classical ones. A fundamental component of
many quantum algorithms is the Quantum Phase Estimation (PE), being used e.g. for large number factorization [1]
and quantum simulation of physical systems [2]. PE is an indispensable subroutine for these applications as it exponen-
tially reduces the number of experiments needed to solve such problems. The first proof-of-principle demonstrations of
PE have relied on Kitaev’s algorithm and its adaptive version [3], called Iterative Phase Estimation Algorithm (IPEA),
that requires a small number of qubits and logic gates and is thus appealing for small scale implementations. These
algorithms use the circuit in Fig.1b to iteratively estimate the bits of the eigenphase φ . However, a common criticism to
these is that the success probability of the algorithm decreases exponentially with experimental noises, e.g. imperfect
operations and decoherence of the system, and can thus be impractical to perform on non-error-corrected devices [4].
New and more robust approaches to PE are thus required for near future experimental implementations.

Here we report the first experimental realization of a new Bayesian approach to PE [5], called Rejection Filtering
Phase Estimation (RFPE), which promises to overcome these issues and also allows to estimate its own error. We show
the performance of RFPE on a state-of-the-art reconfigurable quantum photonic chip, shown in Fig.1a, which is able
to execute a non-compiled logic circuit as in Fig.1b, achieving with high probability chemical accuracy after only 50
measurements. This device allows us to study RFPE under various types of realistic noises, providing experimental
evidence of its practicability and robustness for future applications.

2. Results

The device schematics used to implement the arbitrary controlled-unitary (CU) is shown in Fig.1a. It employs two
integrated SFWM photon pair sources to generate an entangled path-encoded state of two qubits. The two different
path-encoded components of the target qubit go through different unitaries, i.e. 1̂ (top) and ÛM (bottom), yielding a
superposition of circuits that returns the state (|0〉 |φ〉+ |1〉UM |φ〉)/

√
2 after the two spatial modes are mixed. This

accomplishes the arbitrary non-compiled CU operation required to execute the logic circuit in Fig.1b. Single qubit
operations on the control qubit can be performed by a Mach-Zehnder interferometer and phase shifters.
In RFPE each time a measurement is obtained from an experiment a Bayesian update is used to obtain a posterior
probability distribution of the phase. RFPE then adaptively proposes a new experiment that maximizes information
gain based on the updated distribution. Fast and precise reconfiguration of the heaters in our chip allows to reconfigure
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Fig. 1. a) Schematic of the integrated device used for the implementation of the arbitrary CU. b)
Logic quantum circuit for phase estimation. c) Exponentially fast convergence of the experimental
RFPE (shaded area: one standard deviation). d) Experimental values of bond energies of the H2
molecule obtained by RFPE with 50 iterations. e) Experimental study of median errors in RFPE and
IPEA as a function of the phase noise happened in both state predation and gate operations.

experiments in the hundreds of kHz rate, that makes adaptive protocols like RFPE practical on our device.
Fig.1c shows that errors decrease exponentially with number of experiments. We run RFPE with 50 iterations to scan
the bonding energy of molecular hydrogen (H2) for different atomic distances, as reported in Fig.1d. The precision
of these estimated energies is 3 KJ/mol, higher than the chemical accuracy, showing the reliability of the algorithm
for quantum simulation tasks. We then introduce controllable noises in our experiment in order to study the behavior
of both RFPE and IPEA on non-fault-tolerant devices. In Fig.1e we report the results for errors arising from noisy
implementations of both state preparation and CU. To experimentally simulate this kind of noise, for each heater
manipulating the target qubit/gate we replace the correct phase ϕ̄ required to implement the transformation with
a synthetic value ϕ sampled from a gaussian distribution ϕ ∼N (ϕ̄,σphase). Fig.1e shows that while IPEA becomes
unreliable even for very small noise, RFPE maintains a precision of≈ 10−2 in the phase estimation even when σphase≥
0.5 rad, corresponding to average fidelity ≤ 0.94 for the state and ≤ 0.92 for the unitary. We observed qualitatively
similar results also for errors arising from decoherence and coupling losses, proving the robustness claimed in [5].

3. Conclusions

We exploited the high-precision controllability and stability of state-of-the-art quantum photonic technology to achieve
the first experimental demonstration of the RFPE, a novel Bayesian quantum phase estimation. The experimental
results show a strong enhancement in the robustness to noise and decoherence, verifying the claims made in [5],
and make RFPE appealing for near-future applications in quantum simulation and computation on non-fault-tolerant
devices.
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