215 research outputs found

    A conjecture on the relationship of bacterial shape to motility in rod-shaped bacteria

    Full text link
    We have calculated the optimal shape, i.e. the length-to-width ratio of a bacterial cell, that allows a bacterial cell to move most efficiently through liquid. For a cell of a given size, a minimum exists in the force required to move through any liquid when the length of the cell is approx. 3.7 times greater than the width. As this is in approximate agreement with the observed shape of bacteria such as the Enterobacteriaceae, we conjecture that the current observed shape of these bacteria may have been determined, in part, to obtain the most efficient shape for moving through liquids. It is also found that spherical cells are very inefficient in movement through liquid, while longer cells of a fixed size are still relatively efficient in moving through liquids. Since the optimal shape is independent of actual size (within large bounds), it is further proposed that hydrodynamic efficiency considerations support the proposal of constant shape over a range of sizes for rod-shaped bacteria.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73818/1/j.1574-6968.1997.tb10293.x.pd

    Predicting wave exposure in the rocky intertidal zone: do bigger waves always lead to larger forces?

    Get PDF
    Abstract Hydrodynamic forces from breaking waves are among the most important sources of mortality in the rocky intertidal zone. Information about the forces imposed by breaking waves is therefore critical if we are to interpret the mechanical design and physiological performance of wave-swept organisms in an ecologically and evolutionarily relevant context. Wave theory and engineering experiments predict that the process of wave breaking sets a limit on the maximum force to which organisms can be subjected. Unfortunately, the magnitude of this limit has not been determined on rocky shores. To this end, at a moderately exposed shore in central California, we measured the maximum hydrodynamic forces imposed on organism-sized benthic objects and related these forces to nearshore significant wave heights. At 146 of 221 microsites, there was a significant and substantial positive correlation between force and wave height, and at 130 of these microsites, force increased nonlinearly toward a statistically defined limit. The magnitude of this limit varied among sites, from 19 to 730 newtons (N). At 37 other sites, there was no significant correlation between surf zone force and wave height, indicating that increased wave height did not translate into increased force at these sites either. At only 16 sites did force increase in proportion to wave height without an apparent upper bound. These results suggest that for most microsites there is indeed a limiting wave height beyond which force is independent of wave height. The magnitude of the limit varies substantially among microsites, and an index of local topography was found to predict little of this variation. Thus, caution must be exercised in any attempt to relate observed variations in ocean ''waviness'' to the corresponding rates of microsite disturbance in intertidal communities. Rocky intertidal invertebrates and algae live in a world of extreme environmental severity, and the risk of damage or dislodgment from wave-generated forces is thought to be among the most important determinants of survival in this habitat (e.g., Dayton 1971; The use of engineering theory to study these issues has proven fruitful and has led to a deeper understanding of how intertidal organisms are able to withstand the rigors of waveexposed shores (e.g.

    On the Prediction of Extreme Ecological Events

    Get PDF
    Ecological studies often focus on average effects of environmental factors, but ecological dynamics may depend as much upon environmental extremes. Ecology would therefore benefit from the ability to predict the frequency and severity of extreme environmental events. Some extreme events (e.g., earthquakes) are simple events: either they happen or they don\u27t, and they are generally difficult to predict. In contrast, extreme ecological events are often compound events, resulting from the chance coincidence of run-of-the-mill factors. Here we present an environmental bootstrap method for resampling short-term environmental data (rolling the environmental dice) to calculate an ensemble of hypothetical time series that embodies how the physical environment could potentially play out differently. We use this ensemble in conjunction with mechanistic models of physiological processes to analyze the biological consequences of environmental extremes. Our resampling method provides details of these consequences that would be difficult to obtain otherwise, and our methodology can be applied to a wide variety of ecological systems. Here, we apply this approach to calculate return times for extreme hydrodynamic and thermal events on intertidal rocky shores. Our results demonstrate that the co-occurrence of normal events can indeed lead to environmental extremes, and that these extremes can cause disturbance. For example, the limpet Lottia gigantea and the mussel Mytilus californianus are co-dominant competitors for space on wave-swept rocky shores, but their response to extreme environmental events differ. Limpet mortality can vary drastically through time. Average yearly maximum body temperature of L. gigantea on horizontal surfaces is low, sufficient to kill fewer than 5% of individuals, but on rare occasions environmental factors align by chance to induce temperatures sufficient to kill \u3e99% of limpets. In contrast, mussels do not exhibit large temporal variation in the physical disturbance caused by breaking waves, and this difference in the pattern of disturbance may have ecological consequences for these competing species. The effect of environmental extremes is under added scrutiny as the frequency of extreme events increases in response to anthropogenically forced climate change. Our method can be used to discriminate between chance events and those caused by long-term shifts in climate

    Reconstructing an 83-Year Time Series of Daily Sea Surface Temperature at Pacific Grove, California

    Get PDF
    Daily sea surface temperatures have been acquired at the Hopkins Marine Station in Pacific Grove, California since January 20, 1919.This time series is one of the longest oceanographic records along the U.S. west coast. Because of its length it is well-suited for studying climate-related and oceanic variability on interannual, decadal, and interdecadal time scales. The record, however, is not homogeneous, has numerous gaps, contains possible outliers, and the observations were not always collected at the same time each day. Because of these problems we have undertaken the task of reconstructing this long and unique series. We describe the steps that were taken and the methods that were used in this reconstruction. Although the methods employed are basic, we believe that they are consistent with the quality of the data. The reconstructed record has values at every time point, original, or estimated, and has been adjusted for time-of-day variations where this information was available. Possible outliers have also been examined and replaced where their credibility could not be established. Many of the studies that have employed the Hopkins time series have not discussed the issue of data quality and how these problems were addressed. Because of growing interest in this record, it is important that a single, well-documented version be adopted, so that the results of future analyses can be directly compared. Although additional work may be done to further improve the quality of this record, it is now available via the internet. [PDF contains 48 pages

    Organismal Climatology: Analyzing Environmental Variability at Scales Relevant to Physiological Stress

    Get PDF
    Predicting when, where and with what magnitude climate change is likely to affect the fitness, abundance and distribution of organisms and the functioning of ecosystems has emerged as a high priority for scientists and resource managers. However, even in cases where we have detailed knowledge of current species’ range boundaries, we often do not understand what, if any, aspects of weather and climate act to set these limits. This shortcoming significantly curtails our capacity to predict potential future range shifts in response to climate change, especially since the factors that set range boundaries under those novel conditions may be different from those that set limits today. We quantitatively examine a nine-year time series of temperature records relevant to the body temperatures of intertidal mussels as measured using biomimetic sensors. Specifically, we explore how a ‘climatology’ of body temperatures, as opposed to long-term records of habitat-level parameters such as air and water temperatures, can be used to extrapolate meaningful spatial and temporal patterns of physiological stress. Using different metrics that correspond to various aspects of physiological stress (seasonal means, cumulative temperature and the return time of extremes) we show that these potential environmental stressors do not always occur in synchrony with one another. Our analysis also shows that patterns of animal temperature are not well correlated with simple, commonly used metrics such as air temperature. Detailed physiological studies can provide guidance to predicting the effects of global climate change on natural ecosystems but only if we concomitantly record, archive and model environmental signals at appropriate scales

    Warm Microhabitats Drive Both Increased Respiration and Growth Rates of Intertidal Consumers

    Get PDF
    Rocky intertidal organisms are often exposed to broadly fluctuating temperatures as the tides rise and fall. Many mobile consumers living on the shore are immobile during low tide, and can be exposed to high temperatures on calm, warm days. Rising body temperatures can raise metabolic rates, induce stress responses, and potentially affect growth and survival, but the effects may differ among species with different microhabitat preferences. We measured aerial and aquatic respiration rates of 4 species of Lottia limpets from central California, and estimated critical thermal maxima. In a variety of microhabitats in the field, we tracked body temperatures and measured limpet growth rates on experimental plates colonized by natural microalgae. Limpet species found higher on the shore had lower peak respiration rates during high temperature aerial exposure, and had higher critical thermal maxima. Using our long-term records of field body temperatures, we estimated cumulative respiration to be 5 to 14% higher in warm microhabitats. Growth rates in the field appear to be driven by an interaction between available microalgal food resources, low tide temperature, and limpet species identity, with limpets from warmer microhabitats responding positively to higher food availability and higher low tide temperatures. Stressful conditions in warm microhabitats make up a small portion of the total lifetime of these limpets, but the greater proportion of time spent at non-stressful, but warm, body temperatures may result in enhanced growth compared to limpets living in cooler microhabitats

    A point mutation in the murine Hem1 gene reveals an essential role for Hematopoietic Protein 1 in lymphopoiesis and innate immunity

    Get PDF
    Hem1 (Hematopoietic protein 1) is a hematopoietic cell-specific member of the Hem family of cytoplasmic adaptor proteins. Orthologues of Hem1 in Dictyostelium discoideum, Drosophila melanogaster, and Caenorhabditis elegans are essential for cytoskeletal reorganization, embryonic cell migration, and morphogenesis. However, the in vivo functions of mammalian Hem1 are not known. Using a chemical mutagenesis strategy in mice to identify novel genes involved in immune cell functions, we positionally cloned a nonsense mutation in the Hem1 gene. Hem1 deficiency results in defective F-actin polymerization and actin capping in lymphocytes and neutrophils caused by loss of the Rac-controlled actin-regulatory WAVE protein complex. T cell development is disrupted in Hem1-deficient mice at the CD4−CD8− (double negative) to CD4+CD8+ (double positive) cell stages, whereas T cell activation and adhesion are impaired. Hem1-deficient neutrophils fail to migrate in response to chemotactic agents and are deficient in their ability to phagocytose bacteria. Remarkably, some Rac-dependent functions, such as Th1 differentiation and nuclear factor κB (NF-κB)–dependent transcription of proinflammatory cytokines proceed normally in Hem1-deficient mice, whereas the production of Th17 cells are enhanced. These results demonstrate that Hem1 is essential for hematopoietic cell development, function, and homeostasis by controlling a distinct pathway leading to cytoskeletal reorganization, whereas NF-κB–dependent transcription proceeds independently of Hem1 and F-actin polymerization
    • …
    corecore