28 research outputs found

    3,3′-Anisyl-Substituted BINOL, H 4

    No full text

    A Biodegradable, Polymer-Supported Oxygen Atom Transfer Reagent

    No full text
    Biodegradable polymers are desirable to mitigate the environmental impact of plastic waste in the environment. Over the past several decades, the development of organocatalytic ring-opening polymerization (OROP) has made the synthesis of many new types of biodegradable polymers possible. In this research article, the first example of an oxygen atom transfer reagent pendant on a biodegradable polymer backbone is reported. The monomers for the polycarbonate backbone are sourced from the biodegradable 2,2-bis(hydroxymethyl) propionic acid molecule, and an iodoaryl group is installed pendant to the cyclic monomer for post-polymerization modification into an iodosylaryl oxygen atom transfer reagent. The key I-O bond is characterized by XPS spectroscopy, and a test reaction to triphenylphosphine demonstrates the ability of the polymer to engage in an oxygen atom transfer reaction with a substrate

    Perfectionism and Interpersonal Problems

    No full text

    Highly Stereoselective Synthesis of Terminal Chloro-Substituted Propargylamines and Further Functionalization

    No full text
    The highly stereoselective addition of lithiated chloroacetylene, derived <i>in situ</i> from <i>cis</i>-1,2-dichloroethene and methyl lithium, to Ellman chiral <i>N</i>-<i>tert</i>-butanesulfinyl imines is reported. The reaction proceeds in high yield (up to 98%) and with excellent diastereoselectivity (up to >20:1) for a variety of aryl, heteroaromatic, alkyl, and α,β-unsaturated imine substrates. Transformations of the terminal chloro-substituted propargylamine products are described in which lithium–halogen exchange yields nucleophilic acetylides that can be quenched to yield terminal alkynes or intercepted by carbon electrophiles

    Modifying the N-terminus of polyamides: PyImPyIm has improved sequence specificity over f-ImPyIm

    No full text
    Seven N-terminus modified derivatives of a previously published minor-groove binding polyamide (f-ImPyIm, 1) were synthesized and the biochemical and biophysical chemistry evaluated. These compounds were synthesized with the aim of attaining a higher level of sequence selectivity over f-ImPyIm (1), a previously published strong minor-groove binder. Two compounds possessing a furan or a benzofuran moiety at the N-terminus showed a footprint of 0.5microM at the cognate ACGCGT site (determined by DNase I footprinting); however, the specificity of these compounds was not improved. In contrast, PyImPyIm (4) produced a footprint of 0.5microM but showed a superior specificity using the same technique. When evaluated by thermal melting experiments and circular dichroism using ACGCGT and the non-cognate AAATTT sequence, all compounds were shown to bind in the minor-groove of DNA and stabilize the cognate sequence much better than the non-cognate (except for the non-amido-compound that did not bind either sequence, as expected). PyImPyIm (4) was interesting as the DeltaT(m) for this compound was only 4 degrees C but the footprint was very selective. No binding was observed for this compound with a third DNA (non-cognate, ACCGGT). ITC studies on compound 4 showed exothermic binding with ACGCGT and no heat change was observed for titrating the compound to the other two DNA sequences. The heat capacity (DeltaC(p)) of the PIPI/ACGCGT complex calculated from the hydrophobic interactions and SASA calculations was comparable to the experimental value obtained from ITC (-146calmol(-1)K(-1)). SPR results provided confirmation of the sequence specificity of PyImPyIm (4), with a K(eq) value determined to be 7.1x10(6) M(-1) for the cognate sequence and no observable binding to AAATTT and ACCGGT. Molecular dynamic simulations affirmed that PyImPyIm (4) binds as a dimer in an overlapped conformation, and it fits snugly in the minor-groove of the ACGCGT oligonucleotide. PyImPyIm (4) is an especially interesting molecule, because although the binding affinity is slightly reduced, the specificity with respect to f-ImPyIm (1) is significantly improved

    Synthesis and biophysical evaluation of minor-groove binding C-terminus modified pyrrole and imidazole triamide analogs of distamycin

    No full text
    Five polyamide derivatives with rationally modified C-terminus moieties were synthesized and their DNA binding specificity and affinity determined. A convergent approach was employed to synthesize polyamides containing an alkylaminopiperazine (4 and 5), a truncated piperazine (6), or an alkyldiamino-C-terminus moiety (7 and 8) with two specific objectives: to investigate the effects of number of potential cationic centers and steric bulk at the C-terminus. CD studies confirmed that compounds 4, 5, 7, and 8 bind in the minor groove of DNA. The alkylpiperazine containing compounds (4 and 5) showed only moderate binding to DNA with DeltaT(m) values of 2.8 and 8.3 degrees C with their cognate sequence, respectively. The alkyldiamino compounds (7 and 8) were more impressive producing a DeltaT(m) of \u3e17 and \u3e22 degrees C, respectively. Compound 6 (truncated piperazine) did not stabilize its cognate DNA sequence. Footprints were observed for all compounds (except compound 6) with their cognate DNA sequence using DNase I footprinting, with compound 7 producing a footprint of 0.1 microM at the expected 5\u27-ACGCGT-3\u27 site. SPR analysis of compound 7 binding to 5\u27-ACGCGT-3\u27, 5\u27-ACCGGT-3\u27, and 5\u27-AAATTT-3\u27 produced binding affinities of 2.2x10(6), 3.3x10(5), and 1x10(5)M(-1), respectively, indicating a preference for its cognate sequence of 5\u27-ACGCGT-3\u27. These results are in good agreement with the footprinting data. The results indicate that steric crowding at the C-terminus is important with respect to binding. However, the number of cationic centers within the molecule may also play a role. The alkyldiamino-containing compounds (7 and 8) warrant further investigation in the field of polyamide research
    corecore