2,340 research outputs found

    String windings in the early universe

    Full text link
    We study string dynamics in the early universe. Our motivation is the proposal of Brandenberger and Vafa, that string winding modes may play a key role in decompactifying three spatial dimensions. We model the universe as a homogeneous but anisotropic 9-torus filled with a gas of excited strings. We adopt initial conditions which fix the dilaton and the volume of the torus, but otherwise assume all states are equally likely. We study the evolution of the system both analytically and numerically to determine the late-time behavior. We find that, although dynamical evolution can indeed lead to three large spatial dimensions, such an outcome is not statistically favored.Comment: 26 pages, LaTeX, 4 eps figure

    Investigation of Seal-to-Floor Effects on Semi-Span Transonic Models

    Get PDF
    In an effort to achieve the maximum possible Reynolds number (Re) when conducting production testing for flight loads aerodynamic databases, it has been the preferred practice of The Boeing Company / Commercial Airplanes (BCA) -- Loads and Dynamics Group since the early 1990's to test large scale semi-span models in the 11- By 11-Foot Transonic Wind Tunnel (TWT) leg of the Unitary Plan Wind Tunnel (UPWT) at the NASA Ames Research Center (ARC). There are many problems related to testing large scale semi-span models of high aspect ratio flexible transport wings, such as; floor boundary layer effects, wing spanwise wall effects, solid blockage buoyancy effects, floor mechanical interference effects, airflow under the model effects, or tunnel flow gradient effects. For most of these issues, BCA has developed and implemented either standard testing methods or numerical correction schemes and these will not be discussed in this document. Other researchers have reported on semi-span transonic testing correction issues, however most of the reported research has been for low Mach testing. Some of the reports for low Mach testing address the difficult problem of preventing undesirable airflow under a semi-span model while ensuring unrestricted main balance functionality, however, for transonic models this issue has gone unresolved. BCA has been cognizant for sometime that there are marked differences in wing pressure distributions from semi-span transonic model testing than from full model or flight testing. It has been suspected that these differences are at least in part due to airflow under the model. Previous efforts by BCA to address this issue have proven to be ineffective or inconclusive and in one situation resulted in broken hardware. This paper reports on a Boeing-NASA collaborative investigation based on a series of small tests conducted between June 2006 and November 2007 in the 11 by 11 foot Transonic Wind Tunnel at NASA Ames on three large commercial jet transport configurations to assess the effects of sealing a semi-span model to the floor and to investigate efficient sealing and testing techniques. This document will show how sealing the model to the floor has a small but remarkably far reaching spanwise effect on wing pressures, wing local section forces and wing force summations

    Human Apprenticeship Learning via Kernel-based Inverse Reinforcement Learning

    Full text link
    It has been well demonstrated that inverse reinforcement learning (IRL) is an effective technique for teaching machines to perform tasks at human skill levels given human demonstrations (i.e., human to machine apprenticeship learning). This paper seeks to show that a similar application can be demonstrated with human learners. That is, given demonstrations from human experts inverse reinforcement learning techniques can be used to teach other humans to perform at higher skill levels (i.e., human to human apprenticeship learning). To show this two experiments were conducted using a simple, real-time web game where players were asked to touch targets in order to earn as many points as possible. For the experiment player performance was defined as the number of targets a player touched, irrespective of the points that a player actually earned. This allowed for in-game points to be modified and the effect of these alterations on performance measured. At no time were participants told the true performance metric. To determine the point modifications IRL was applied on demonstrations of human experts playing the game. The results of the experiment show with significance that performance improved over the control for select treatment groups. Finally, in addition to the experiment, we also detail the algorithmic challenges we faced when conducting the experiment and the techniques we used to overcome them.Comment: 31 pages, 23 figures, Submitted to Journal of Artificial Intelligence Research, "for source code, see https://github.com/mrucker/kpirl-kla

    Sectoral vs. Aggregate Shocks: A Structural Factor Analysis of Industrial Production

    Get PDF
    This paper uses factor analytic methods to decompose industrial production (IP) into components arising from aggregate shocks and idiosyncratic sector-specific shocks. An approximate factor model finds that nearly all (90%) of the variability of quarterly growth rates in IP are associated with common factors. Because common factors may reflect sectoral shocks that have propagated by way of input-output linkages, we then use a multisector growth model to adjust for the effects of these linkages. In particular, we show that neoclassical multisector models, of the type first introduced by Long and Plosser (1983), produce an approximate factor model as a reduced form. A structural factor analysis then indicates that aggregate shocks continue to be the dominant source of variation in IP, but the importance of sectoral shocks more than doubles after the Great Moderation (to 30%). The increase in the relative importance of these shocks follows from a fall in the contribution of aggregate shocks to IP movements after 1984.

    MATHEMATICAL MODELING OF ANNULAR REACTORS

    Get PDF
    A generalized mathematical model for describing the whole-cell-hollow-fiber reactor and the annular bed reactor is presented. The annular reactor model consists of a mixed-type problem for which a novel numerical procedure is developed. The procedure is demonstrated for a number of examples, and it is proved that the model and solution technique are well suited for the simulation of annular reactors

    Li zoning in zircon as a potential geospeedometer and peak temperature indicator

    Get PDF
    Zircon Li concentrations and δ[superscript 7]Li values may potentially trace crustal recycling because continental and mantle-derived zircons yield distinct values. The usefulness of these differences may depend upon the retentivity of zircon to Li concentrations and isotopic ratios. Given the relatively high Li diffusivities measured by Cherniak and Watson (Contrib Mineral Petrol 160: 383–390, 2010), we sought to discover the scenarios under which Li mobility might be inhibited by charge-compensating cations. Toward this end, we conducted “in” diffusion experiments in which Li depth profiles of synthetic Lu-doped, P-doped, and undoped zircon were determined by nuclear reaction analysis. In separate experiments, Li was ion-implanted at depth within polished natural zircon slabs to form a Gaussian Li concentration profile. Diffusively relaxed concentration profiles were measured after heating the slabs to determine diffusivities. In all experiments, which ranged from 920 to 650 °C, calculated diffusivities are in agreement with a previously established Arrhenius relationship calibrated on trace-element-poor Mud Tank zircon. Our revised Arrhenius relationship that includes both datasets is: D[subscript Li] = 9.60 x 10[superscript -7] exp [-278 ± 8 kJ mol[superscript - 1]/RT] m[superscript 2] s[superscript - 1] We also observed that synthetic sector-zoned zircon exhibits near-step-function Li concentration profiles across sectors that correlate with changes in the rare earth element (REE) and P concentrations. This allowed us to examine how Li diffusion might couple with REE diffusion in a manner different than that described above. In particular, re-heating these grains revealed significant Li migration, but no detectable migration of the rare earth elements. Thus, unlike most elements in zircon which are not mobile at the micrometer scale under most time–temperature paths in the crust, Li zoning, relaxation of zoning, or lack of zoning altogether could be used to reveal time–temperature information. Discrete ~10 μm concentration zones of Li within zircon may be partially preserved at 700 °C for tens to hundreds of years, and at 450 °C for millions of years. In this regard, Li zoning in zircon holds significant potential as a geospeedometer, and in some instances as a qualitative indicator of the maximum temperature experienced by the zircon

    Identification of T cell stimulatory epitopes from the 18 kDa protein of Mycobacterium leprae

    Get PDF
    We have used different mouse strains to examine in vivo and in vitro responses to the 18 kDa protein of Mycobacterium leprae, which appears to be strongly immunogenic in both mice and humans. B and T cell stimulatory epitopes recognised by different strains of mice have been mapped using overlapping peptides that span the entire 18 kDa protein. Previous work established that Immunization of mice with the 18 kDa protein results in specific antibody production to common B cell epitopes and immunization of mice with peptides containing these B cell epitopes resulted in the induction of specific IgG to only a limited subset of epitopes in each strain. Now we report that T cells purified from mice immunized with peptides that stimulate antibody production, proliferate in vitro when rechallenged. The proliferating T cells produce levels of IL-2 and IFN-Îł, that indicate antigen-specific T helper type 1 cells are present in significant numbers. Thus, a comparison of in vivo and in vitro data suggests that T cells bearing the phenotype associated with potentially protective cell-mediated responses can be primed in vivo by epitopes on small peptides. Since T cells from both strains of mice are capable of responding to the immunogenic synthetic peptides in vitro, but give different responses to the same peptides in vivo, factors other than epltope structure appear to influence T cell subset activation. This may have important implications for diseases such as leprosy where a polarized T cell response appears to develop and for the development of synthetic subunit vaccine

    A programmable two-qubit quantum processor in silicon

    Full text link
    With qubit measurement and control fidelities above the threshold of fault-tolerance, much attention is moving towards the daunting task of scaling up the number of physical qubits to the large numbers needed for fault tolerant quantum computing. Here, quantum dot based spin qubits may offer significant advantages due to their potential for high densities, all-electrical operation, and integration onto an industrial platform. In this system, the initialisation, readout, single- and two-qubit gates have been demonstrated in various qubit representations. However, as seen with other small scale quantum computer demonstrations, combining these elements leads to new challenges involving qubit crosstalk, state leakage, calibration, and control hardware which provide invaluable insight towards scaling up. Here we address these challenges and demonstrate a programmable two-qubit quantum processor in silicon by performing both the Deutsch-Josza and the Grover search algorithms. In addition, we characterise the entanglement in our processor through quantum state tomography of Bell states measuring state fidelities between 85-89% and concurrences between 73-80%. These results pave the way for larger scale quantum computers using spins confined to quantum dots

    Testing for Cointegration When Some of the Contributing Vectors are Known

    Get PDF
    Many economic models imply that ratios, simple differences, or `spreads' of variables are I(0). In these models, cointegrating vectors are composed of 1's, 0's and -1's, and contain no unknown parameters. In this paper we develop tests for cointegration that can be applied when some of the cointegrating vectors are known under the null or under the alternative hypotheses. These tests are constructed in a vector error correction model (VECM) and are motivated as Wald tests in the version of this Gaussian model. When all of the cointegrating vectors are known under the alternative, the tests correspond to the standard Wald tests for the inclusion of error correction terms in the VAR. Modifications of this basic test are developed when a subset of the cointegrating vectors contains unknown parameters. The asymptotic null distribution of the statistics are derived, critical values are determined, and the local power properties of the test are studied. Finally, the test is applied to data on foreign exchange future and spot prices to test the stability of forward-spot premium.

    Time-Dependent Density Functional Theory of Open Quantum Systems in the Linear-Response Regime

    Get PDF
    Time-Dependent Density Functional Theory (TDDFT) has recently been extended to describe many-body open quantum systems (OQS) evolving under non-unitary dynamics according to a quantum master equation. In the master equation approach, electronic excitation spectra are broadened and shifted due to relaxation and dephasing of the electronic degrees of freedom by the surrounding environment. In this paper, we develop a formulation of TDDFT linear-response theory (LR-TDDFT) for many-body electronic systems evolving under a master equation, yielding broadened excitation spectra. This is done by mapping an interacting open quantum system onto a non-interacting open Kohn-Sham system yielding the correct non-equilibrium density evolution. A pseudo-eigenvalue equation analogous to the Casida equations of usual LR-TDDFT is derived for the Redfield master equation, yielding complex energies and Lamb shifts. As a simple demonstration, we calculate the spectrum of a C2+^{2+} atom in an optical resonator interacting with a bath of photons. The performance of an adiabatic exchange-correlation kernel is analyzed and a first-order frequency-dependent correction to the bare Kohn-Sham linewidth based on Gorling-Levy perturbation theory is calculated.Comment: 18 pages, 4 figure
    • …
    corecore