2,341 research outputs found

    Effect of Wafer Bow and Etch Patterns in Direct Wafer Bonding

    Get PDF
    Direct wafer bonding has been identified as an en-abling technology for microelectromechanical systems (MEMS). As the complexity of devices increase and the bonding of multiple patterned wafers is required, there is a need to understand the factors that lead to bonding failure. Bonding relies on short-ranged surface forces, thus flatness deviations of the wafers may prevent bonding. Bonding success is determined by whether or not the surface forces are sufficient to overcome the flatness deviations and deform the wafers to a common shape. A general bonding criterion based on this fact is developed by comparing the strain energy required to deform the wafers to the surface energy that is dissipated as the bond is formed. The bonding criterion is used to examine the case of bonding bowed wafers with etch patterns on the bonding surface. An analytical expression for the bonding criterion is developed using plate theory for the case of bowed wafers. Then, the criterion is implemented using finite element analysis, to demonstrate its use and to validate the analytical model. The results indicate that wafer thickness and curvature are important in determining bonding success and that the bonding criterion is independent of wafer diameter. Results also demonstrate that shallow etched patterns can make bonding more difficult while deep features, which penetrate through an appreciable thickness of the wafer, may facilitate bonding. Design implications of the model results are discussed in detail. Preliminary results from experiments designed to validate the model, agree with the trends seen in the model, but further work is required to achieve quantitative correlation.Singapore-MIT Alliance (SMA

    Prototype Common Bus Spacecraft: Hover Test Implementation and Results

    Get PDF
    In order to develop the capability to evaluate control system technologies, NASA Ames Research Center (Ames) began a test program to build a Hover Test Vehicle (HTV) - a ground-based simulated flight vehicle. The HTV would integrate simulated propulsion, avionics, and sensors into a simulated flight structure, and fly that test vehicle in terrestrial conditions intended to simulate a flight environment, in particular for attitude control. The ultimate purpose of the effort at Ames is to determine whether the low-cost hardware and flight software techniques are viable for future low cost missions. To enable these engineering goals, the project sought to develop a team, processes and procedures capable of developing, building and operating a fully functioning vehicle including propulsion, GN&C, structure, power and diagnostic sub-systems, through the development of the simulated vehicle

    2006 Housing in the Nation's Capital

    Get PDF
    Explores the interdependent relationship between public school systems and housing markets, and examines the ability of coordinated investment in affordable housing and quality education to revitalize Washington, D.C., metropolitan area neighborhoods

    Culture-independent bacterial community profiling of carbon dioxide treated raw milk

    Get PDF
    Due to technical simplicity and strong inhibition against the growth of psychrotrophic bacteria in milk, CO treatment has emerged as an attractive processing aid to increase the storage time of raw milk before downstream processing. However, it is yet to be adopted by the industry. In order to further explore the suitability of CO treatment for raw milk processing, the bacterial populations of carbonated raw milk collected locally from five different sources in Australia were analysed with next-generation sequencing. Growth inhibition by CO was confirmed, with spoilage delayed by at least 7\ua0days compared with non-carbonated controls. All non-carbonated controls were spoiled by Gammaproteobacteria, namely Pseudomonas fluorescens group bacteria, Serratia and Erwinia. Two out of the five carbonated samples shared the same spoilage bacteria as their corresponding controls. The rest of the three carbonated samples were spoiled by the lactic acid bacterium (LAB) Leuconostoc. This is consistent with higher tolerance of LAB towards CO and selection of LAB in meat products stored in CO-enriched modified atmosphere packaging. No harmful bacteria were found to be selected by CO. LAB are generally regarded as safe (GRAS), thus the selection for Leuconostoc by CO in some of the samples poses no safety concern. In addition, we have confirmed previous findings that 454 pyrosequencing and Illumina sequencing of 16S rRNA gene amplicons from the same sample yield highly similar results. This supports comparison of results obtained with the two different sequencing platforms, which may be necessary considering the imminent discontinuation of 454 pyrosequencing

    Encapsulation of Lactobacillus plantarum in porous maize starch

    Get PDF
    This study investigated the survival of probiotic Lactobacillus plantarum 299v microencapsulated in native maize starch or partially hydrolyzed maize starches after acid, bile and heat treatments. Scanning electron microscopy and confocal scanning laser microscopy confirmed that naturally present cavities and channels in native maize starch were enlarged by enzymatic hydrolysis allowing them to be filled with probiotics. The formulations using the modified starches had significantly higher initial viable cells compared to native starch after freeze-drying. Compared to free cells, the microencapsulated probiotic bacteria showed a significant improvement in acid tolerance. When comparing unmodified and modified starches, the enzymatic treatments did not significantly improve relative survival, but did result in significantly higher total probiotic numbers after exposure to acid (pH = 2.0, 1 h), bile salt (3% w/v, 4 h) and heat (60 °C, 15min). These results demonstrate that porous maize starch granules allow for a high probiotic loading efficiency and provide enhanced protection to various stressful conditions compared to free cells

    Effects on Freshwater Organisms of Magnetic Fields Associated with Hydrokinetic Turbines

    Get PDF
    Underwater cables will be used to transmit electricity between turbines in an array (interturbine cables), between the array and a submerged step-up transformer (if part of the design), and from the transformer or array to shore. All types of electrical transmitting cables (as well as the generator itself) will emit EMF into the surrounding water. The electric current will induce magnetic fields in the immediate vicinity, which may affect the behavior or viability of animals. Because direct electrical field emissions can be prevented by shielding and armoring, we focused our studies on the magnetic fields that are unavoidably induced by electric current moving through a generator or transmission cable. These initial experiments were carried out to evaluate whether a static magnetic field, such as would be produced by a direct current (DC) transmitting cable, would affect the behavior of common freshwater fish and invertebrates
    • …
    corecore