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Abstract  22 

This study investigated the survival of probiotic Lactobacillus plantarum 299v microencapsulated 23 

in native maize starch or partially hydrolyzed maize starches after acid, bile and heat treatments. 24 

Scanning electron microscopy and confocal scanning laser microscopy confirmed that naturally 25 

present cavities and channels in native maize starch were enlarged by enzymatic hydrolysis 26 

allowing them to be filled with probiotics. The formulations using the modified starches had 27 

significantly higher initial viable cells compared to native starch after freeze-drying. Compared to 28 

free cells, the microencapsulated probiotic bacteria showed a significant improvement in acid 29 

tolerance. When comparing unmodified and modified starches, the enzymatic treatments did not 30 

significantly improve relative survival, but did result in significantly higher total probiotic 31 

numbers after exposure to acid (pH=2.0, 1 h), bile salt (3% w/v, 4 h) and heat (60 °C, 15min).  32 

These results demonstrate that porous maize starch granules allow for a high probiotic loading 33 

efficiency and provide enhanced protection to various stressful conditions compared to free cells.  34 

 35 

Key words: 36 

Probiotics, Prebiotics, Encapsulation, Modified Starch, Lactobacillus plantarum  37 

  38 
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1.  Introduction 39 

In recent years, probiotics are becoming more commonly incorporated into functional foods. 40 

Health-promoting microorganisms play an important role in promotion of the gastrointestinal tract 41 

(GIT) health (Kailasapathy & Chin, 2000). Lactobacillus plantarum 299v is added in many food 42 

products, mainly fermented milks, because of its recognized health properties, such as 43 

improvement of irritable bowel syndrome (Niedzielin, Kordecki, & Birkenfeld, 2001) and 44 

vascular endothelial function (Malik et al., 2015). However, the applications are limited by 45 

viability of probiotic cells, which is affected by processing and storage conditions and the 46 

environment in the GIT (Cook, Tzortzis, Charalampopoulos, & Khutoryanskiy, 2012). In order to 47 

confer a functional effect within the body, a probiotic food should contain an adequate number of 48 

viable bacteria (> 107 CFU g-1 of food) to exert a probiotic effect (Corona-Hernandez et al., 2013). 49 

Various carrier material and preparation techniques are used and investigated for encapsulation of 50 

probiotics. Food-grade polymers such as alginate, chitosan, pectin, carrageenan, whey, gelatin and 51 

lipids are extensively studied to immobilize bacteria (Anal & Singh, 2007). Extrusion and 52 

emulsion techniques are commonly applied to produce calcium alginate beads in which a 53 

particularly strong molecular network can be formed to entrap cells. Although alginate hydrogel 54 

beads were found to have positive effects in protection of probiotics in a gastric environment and 55 

during storage, other polymers should be incorporated to improve stability of alginate 56 

microcapsules, as the beads formed by alginate alone have relatively low mechanical stability and 57 

entrapment of probiotics is not stable in the presence of chelating agents (Krasaekoopt, Bhandari, 58 

& Deeth, 2003; Willaert & Baron, 1996). 59 
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Starch that is slowly digestible or resistant to pancreatic amylases has a prebiotic effect which is of 60 

great interest as it is known to promote the growth of intestinal microflora and subsequently 61 

induces health benefits within the body (Toppings & Clifton, 2001). Improvements in glycaemic 62 

control and bowel health are associated with the regular intake of fermentable dietary fibre 63 

(Nugent, 2005). Furthermore, selection of starch with smaller granule size, white in colour and 64 

bland flavour could impart attractive sensory characteristics for food applications.  65 

Encapsulation is one of the best approaches to obtain a synbiotic effect of probiotic bacteria and 66 

enzyme resistant starch (Fuentes-Zaragoza et al., 2011). Wang, Brown, Evans, and Conway (1999) 67 

found that high-amylose maize starch enhanced the tolerance of Bifidobacterium to low pH and 68 

bile acids. The incorporation of starch within alginate gel beads has been widely employed to 69 

provide synergistic protection for probiotic bacteria (Chan et al., 2011; Homayouni, Azizi, Ehsani, 70 

Yarmand, & Razavi, 2008; Kailasapathy, 2006; Muthukumarasamy, Allan-Wojtas, & Holley, 2006; 71 

Sabikhi, Babu, Thompkinson, & Kapila, 2010; Sultana et al., 2000; Xing et al., 2014). However, 72 

knowledge on the use of porous granular starch as an encapsulating material is still in its infancy.  73 

In order to obtain further functional properties and improve the performance as wall materials, 74 

starch granules can be modified into porous capsules which have industrial applications such as 75 

drug delivery, flavor entrapment etc. The presence of structure features like pores, channels and 76 

cavities in maize starch (Dhital, Shrestha, & Gidley, 2010) provides an expandable space which 77 

can be filled with bacteria after amylase digestion. The structures increase effective surface area, 78 

and facilitate a relatively higher enzymatic hydrolysis susceptibility compared to potato starch 79 

(Dhital et al., 2010). Maize starch is thus more applicable to be modified into porous capsules by 80 
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enzymatic digestion than potato starch. The target core material could be physically adsorbed in 81 

the pores and cavities without any covalent bonding, and the adsorbed molecules could be 82 

completely released in a sustained pattern (Wang, Yuan, & Yue, 2015). It is also worthy of note 83 

that partially hydrolyzed maize starch has been shown to remain slowly digestible like untreated 84 

native starch (Zhang, Ao, & Hamaker, 2006), which suggests that it can be used for targeted 85 

delivery to the large intestine. The process of enzyme digestion of maize starch resulted in a 3~4 86 

times increase of the magnitude of specific surface area (Gao, Li, Bi, Mao, & Adhikari, 2013). The 87 

porous maize starch thus could provide an ideal internal surface for adherence of the probiotic 88 

bacteria during processing. However, further studies are required to understand the effect of 89 

microstructure of porous starch on properties of microcapsules containing probiotics. More 90 

accurate delivery in the digestive tract may be subsequently achieved by manipulating preparation 91 

of starch materials.  92 

In this study, modified maize starches from different enzymatic treatments were employed as wall 93 

materials to encapsulate L. plantarum 299v. The morphologies of modified wall materials and 94 

probiotic starch capsules were characterized. Furthermore, stability of the probiotic strain in 95 

microcapsules was investigated by exposure to simple stimulated GIT conditions and under mild 96 

heat treatment. 97 

2.  Materials and methods 98 

2.1 Preparation of probiotic culture 99 

A probiotic strain L. plantarum 299v was obtained from a commercial probiotic capsule (IBS 100 

Support, Ethical Nutrients, Brisbane Australia) and confirmed as the correct species using 16s 101 
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rDNA sequencing (Sreekumar, Al-Attabi, Deeth, & Turner, 2009). The strain was grown in de 102 

Man, Rogosa and Sharpe (MRS; Oxoid Ltd, UK) broth at 37 °C for 24 h and then harvested by 103 

centrifugation at 4400 ×‐g for 10 min. The cell pellet was washed twice and resuspended with 104 

sterile 0.2 M sodium phosphate buffer (pH=6.3) to obtain concentrated (approximately 1010 CFU 105 

mL-1) probiotic organisms. 106 

2.2 Preparation of porous starch 107 

Pancreatic α-amylase (PA [A6255 Sigma]), pancreatin (P [P-1750 Sigma]), fungal α-amylase (FA 108 

[10065 Sigma]) were purchased from Sigma-Aldrich, USA. The three enzymes and two treatment 109 

times (30 min and 120 min) were applied to modify native maize starch (22.2% amylose, Penford 110 

Australia Ltd., Australia). The starch slurry (5% w/v) was prepared with PBS (Sigma-Aldrich, 111 

USA) buffer and enzymes (0.5 unit per mg of starch) was mixed with the starch suspension. A 112 

control was prepared without addition of enzymes. The samples, in 50 mL Falcon tubes, were 113 

continuously stirred with a magnetic stirrer bar at 250 ×‐g during the incubation time in a water 114 

bath maintained at 37 °C. After 30 and 120 min, porous starches were harvested by centrifugation 115 

of the tubes at 4000 ×‐g for 5 min. The residue was washed three times with excess of ethanol to 116 

remove soluble sugars and the residual enzymes. Finally, starch sediments were transferred to petri 117 

plates and vacuum-oven dried overnight at 40 °C. Two batches were prepared for each treatment. 118 

These wall materials after preparation are referred to as P30, P120, PA30, PA120, FA30, FA120 119 

and Native, respectively. The degree of hydrolysis of starch as measured by released maltose was 120 

18-22% for 30 min and 36-41% for 120 minute hydrolysis. The degree of hydrolysis was however 121 

not significantly different among enzymes at each time point. 122 
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2.3 Encapsulation of L. plantarum cells 123 

L. plantarum cells were encapsulated in the prepared maize starches according to the method 124 

described by Lahtinen, Ouwehand, Salminen, Forssell, and Myllärinen (2007) with slight 125 

modifications. The bacterial culture (6 mL) was transferred into sterile tubes containing 2.0 g 126 

starch and stirred at 600 ×‐g for 3 h using an orbital shaker (Labtek, Australia). Then the mixture 127 

was allowed to settle for 2 h. The supernatant was carefully pipetted off. The sediment was placed 128 

in a petri plate and pre-cooled in a freezer (-20 °C) for 4 h before being freeze-dried overnight. For 129 

the coating material, gelatinized starch was prepared by heating native starch (2% w/v) in water 130 

for 15 min on a hotplate until it formed a gel. After cooling to room temperature, the gel solution 131 

was gently mixed with the freeze-dried powder (3 mL g-1 starch). Gelatinised starch coated porous 132 

starch granules was recrystallized at -20 °C overnight followed by freeze-drying for 24 h. After 133 

that, the microcapsules were collected and maintained in sterile 10 mL tubes at 4 °C prior to 134 

testing. The encapsulation process was conducted in duplicate, separately using two batches of 135 

prepared starches. 136 

2.4 Determination of viable bacteria 137 

The number of viable L. plantarum was counted by the spread-plate technique on MRS agar. The 138 

microcapsules (0.10 g) were first added into 0.9 mL peptone water (0.1% w/v) containing 139 

pancreatin (0.5 unit / mg starch). The pancreatin was added to hydrolyze the starch releasing the 140 

encapsulated bacteria. The plates were rotated on an orbital shaker (Labtek, Australia) at 600 ×‐141 

g for 15 min. Serial dilutions were made with peptone water (0.1% w/v) and 0.1 ml samples from 142 

each of three consecutive dilutions were spread onto MRS agar. The agar plates were incubated at 143 
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37 °C for 36 h under anaerobic conditions generated by AnaeroGen 3.5 L (Oxoid Ltd). Colony 144 

forming units (CFU) were enumerated and recorded for plates on which 15-300 colonies can be 145 

viewed. The loss in bacteria viability was calculated as follows:  146 

Reduction of viable bacteria = log N0 – log N, where, N0 and N are viable count (CFU g-1 or CFU 147 

mL-1) before and after treatments (acid, bile and heat), respectively. 148 

2.5 Resistance to acid and bile salt 149 

Acid and bile salt stress survival experiments of microencapsulated and free probiotic bacteria 150 

were carried out in accordance with the method of Ding and Shah (2007). Free bacterial 151 

suspension (9.46 log CFU mL-1) was used as a control. For acid stress, MRS broth was modified 152 

to pH 2.0 using 5.0 M HCl before sterilization by autoclaving at 121 °C for 15 min. The acidified 153 

broth (0.90 mL) was added into a test tube (2 mL) containing 0.10 g microcapsules or 0.10 mL 154 

free cell suspension. After incubation at 37 °C for 1 h and 2 h, 1 M NaOH was added to neutralize 155 

the acid. For bile salt stress, MRS broth containing 3 % (w/v) Oxgall bile salt (Chem-Supply, 156 

Australia) was adjusted to pH 5.8 using 5.0 M HCl. The bile salt solution (0.90 mL) was added 157 

into a test tube (2 mL) containing 0.10 g microcapsules or 0.10 mL free cell suspension and 158 

incubated at 37 °C for 2 h and 4 h separately. For determination of viable bacteria, microcapsules 159 

were centrifuged from broths (10000 ×‐g, 5 min) and bacteria were released from starches as 160 

described in Section 2.4. For free bacteria, subsequent serial dilutions were vortexed for 30 s 161 

individually to disperse bacteria clusters which were formed during incubation. Enumeration of 162 

viable cells was carried out by the method described in Section 2.4. For each batch of 163 

microcapsules, duplicate tests were performed separately.  164 
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2.6 Resistance to heat 165 

Evaluation of the stability of microencapsulated and free L. plantarum under mild heat treatment 166 

was carried out according to Mandal, Puniya, and Singh (2006). Before exposure to a dry block 167 

heater (60 °C), 0.10 g microcapsules or 0.10 mL free cells suspension was inoculated into 0.90 mL 168 

sodium phosphate buffer (pH=6.3) in a plastic test tube (2 mL). After 15 min incubation, the tubes 169 

were cooled to room temperature (23±2 °C) and the total number of viable cells was detected as 170 

described in Section 2.4. 171 

2.7 Confocal laser scanning microscopy (CLSM) 172 

CLSM (LSM 700, Carl Zeiss, Germany) was used to visualize the distribution of probiotic 173 

bacteria using a LIVE/DEAD BacLight kit L7012 (Molecular ProbesTM, Oregon, USA). Bacterial 174 

materials were stained following the manufacturer’s protocol. Dry powder (~ 10 µg) was gently 175 

mixed with 10 µl of staining mixture (SYTO 9 and propidium iodide fluorescent dyes) on a 176 

microscope slide and covered with a square coverslip. After staining for 30 min in darkness, the 177 

samples were observed with 488 nm excitation wavelength and  ×‐63 magnification objective 178 

(oil immersion).  179 

2.8 Morphology of porous starches  180 

Scanning electron microscopy was used to monitor the morphological structure of starch after 181 

enzymatic treatment. The dried samples were thinly spread onto circular metal tubes covered with 182 

double sided carbon tape and coated with approximately 5 nm of platinum in an argon gas 183 

environment. The images were acquired using a Philips XL30 scanning electron microscope 184 

(Philips, Eindhoven, Netherlands) under an accelerating voltage of 5 kV.  185 
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2.9 Statistical analysis 186 

For the each independent batch (n=2), duplicate samples were analysed. Average of duplicate tests 187 

for each batch was calculated prior to the analysis of significant differences (p < 0.05) using 188 

Tukey’s simultaneous test in Minitab 17. All experimental data are expressed as mean ±S.D. 189 

3.  Results 190 

3.1 Microstructure of the microcapsules 191 

The microstructure of native and partially hydrolyzed maize starch was observed in scanning 192 

electron micrographs (Fig. 1). The images confirmed that the enzymatic action resulted in porous 193 

structures in the round and polygonal granules. The surface of native starch without amylase 194 

treatment (Fig. 1 B) remained relatively smooth and showed no visible holes, indicating the 195 

preparation for the control did not affect its morphology. Some tiny hollows and cracks on native 196 

granules are visible at higher magnification (Dhital et al., 2010). An increased size and numbers of 197 

pores were observed after enzymatic digestion (Fig. 1 C-H). Consistent with the degree of 198 

hydrolysis, surface pores and the pore sizes are visually similar among starches treated with 199 

amylase from various sources. Larger pores were formed by interconnection of holes which 200 

increased in number during enzyme treatment duration.  201 

Confocal microscopy and nucleic acid staining technique were employed to observe the 202 

distribution of probiotic bacteria in starch materials. The porous starch granules clearly showed 203 

the ‘inside out’ hydrolysis pattern with the enlargement of cavities (Dhital et al., 2010) which 204 

entrapped the green-fluorescent bacteria in expanded cavities (Fig. 2 B and C), whereas 205 

unmodified starch only absorbed the bacteria on the surface (Crittenden et al., 2001) (Fig. 2 A). 206 
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The green fluorescent bacteria that had dimensions of 1 to 2 µm in length were stained by SYTO9 207 

(green) but not by PI (red), which indicated that the bacterial membrane was not permeablized for 208 

the larger molecule of PI to pass through, suggesting that the bacteria were viable. Relatively 209 

higher cell loading can be observed in the modified starch despite the same bacterial suspension 210 

being used for the encapsulation process. As shown in Fig. 2 A, a small amount of bacteria 211 

adhered to the granule surface, which suggested that L. plantarum 299v is not a highly adhering 212 

strain for maize starch. Regarding the microstructure inside the starch granule under transmitted 213 

light, the 120-min hydrolyzed starch granule showed a relatively larger cavity than the 30-min 214 

treated granules. The observation is consistent with the SEM image (Fig. 1) where the starch 215 

granule cavities showed increased depth after digestion for a longer duration. 216 

 217 

3.2 Viable cell numbers after microencapsulation process 218 

The encapsulated cell numbers after the microencapsulation process were significantly improved 219 

by enzymatic modification (Table 1). Initial cell numbers were around 9 log CFU g-1 in all the 220 

modified starches compared to 7.77 log CFU g-1 for native starch. The result is consistent with the 221 

observation by CLSM that modified starch had a higher cell loading. However, there was no 222 

significant difference (p > 0.05) among the different porous starches.  223 

 224 

3.3 Acid and bile salt tolerance of free and encapsulated L. plantarum 225 

Microencapsulated bacteria showed greater acid resistance, with significantly less reduction of 226 

viability (p < 0.05) over the entire treatment period (Fig. 3 A). Free bacteria showed a rapid loss of 227 

viable cells, having 2.43 and 4.66 log CFU mL-1 reduction (from an initial viable count of 9.46 log 228 
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CFU mL-1) at the end of 1-h and 2-h exposure to acid, respectively. By contrast, the loss of viable 229 

bacteria after microencapsulation occurred at a relatively slow rate, with less than 2 log CFU g-1 230 

reduction by the end of incubation in the high acid environment. The viable counts of L. 231 

plantarum encapsulated by modified starches remained more than 107 CFU g-1 after 2-h exposure 232 

to acid (Table 1), which were significantly higher than free cells.  233 

As for the microparticle prepared with native maize starch, the bacterial counts decreased from 234 

7.77 to 6.69 and 6.15 log CFU g-1 at the end of 1 h and 2 h at pH 2.0, respectively (Table 1). 235 

Compared to modified starches, native maize starch retained a significantly lower number of 236 

viable cells after 1-h exposure to acid. However, log reductions of bacteria in unmodified and 237 

modified starches were similar, which indicated that the enzymatic modification on starch 238 

granules has little effect towards the acid resistance of L. plantarum. 239 

The effect of the bile salt solution on the survivability of free and encapsulated L. plantarum was 240 

also investigated (Fig. 3 B). There was no significant difference among the reduction of viable 241 

counts of encapsulated or free L. plantarum in bile salt solution. Enzymatic modification did not 242 

improve the protection effect of maize granules used as wall materials during exposure to bile salt 243 

(p > 0.05). The reductions of free cells and bacteria encapsulated with native starch were 1.81 log 244 

CFU mL-1 and 1.73 log CFU g-1 after 4-h exposure to bile salt, respectively, while the figures of 245 

modified starches were less than 1.10 log CFU g-1. Encapsulated cells prepared with native starch 246 

granules decreased to 6.95 and 6.04 log CFU g-1 at the end of 2 h and 4 h incubation with bile salts, 247 

respectively (Table 1). Compared to modified maize starch, native starch contained significantly 248 

less viable bacteria after the 4-h period.  249 
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 250 

3.4 Stability of free and encapsulated L. plantarum under heat treatment  251 

The reduction in cell viability of free and microencapsulated L. plantarum after the 60 °C heat 252 

treatment for 15 min is shown in Fig. 4. Encapsulation with maize starch granules (except 253 

unmodified starch and FA 30) combined with gelatinized starch coating significantly improved the 254 

heat tolerance of L. plantarum (p < 0.05). The enzymatic modification did not result in less log 255 

reduction after heat treatment compared with native starch (p > 0.05), but the viable cell counts of 256 

modified starches were significantly higher than unmodified maize starch after incubation at 60 oC 257 

for 15 min (p < 0.05) (Table 1). L. plantarum encapsulated in porous starches either from 30 min 258 

digestion or 120 min digestion showed similar survivability and therefore, the effect of digestion 259 

time was not significant (p > 0.05).  260 

 261 

4. Discussion  262 

Starch is not usually used alone for encapsulation, even though it is frequently reported as a 263 

supplementary component in microcapsule formulations. However, the current model of 264 

prebiotic–probiotic symbiosis was effective to study the effect of microstructure of porous starch 265 

on properties of the microcapsules. The presence of porous maize starch was essential for 266 

improving the recovery of encapsulated L. plantarum 299v formulations during the freeze-drying 267 

process. In addition, the viability remained relatively higher than the formulations using native 268 

starch after simulated digestion and heating treatments (Table 1). This could provide a robust 269 

delivery strategy for probiotics in food products and ultimately following ingestion. 270 

4.1 Preparation of starch materials 271 
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The choice of the type of starch is critical during the preparation of wall materials. We chose 272 

maize starch because it is slowly digestible and has the potential to deliver entrapped bacteria to 273 

the large colon. Limited amylase treatment can hydrolyze the starch in an ‘inside out’ pattern 274 

creating a void space allowing bacteria to diffuse into, as shown in Fig. 1, which is consistent with 275 

previous findings (Dhital et al., 2010; Dura, Błaszczak, & Rosell, 2014). In contrast, amylase 276 

action in potato starch lacking such structural features results in exo-corrosion followed by 277 

endo-corrosion (Dhital et al., 2010). Whilst the porous starch can also be obtained by other 278 

methods such as ultrasonic treatment (Luo et al., 2008) and microwave radiation (Luo, He, Fu, 279 

Luo, & Gao, 2006), these methods may not result in enlargement of cavities and channels 280 

sufficient for probiotic bacteria encapsulation as observed for amylase digested granules. 281 

Regarding the catalytic pattern of amylase, the relatively small granule size, a rough surface and 282 

the presence of surface pores and channels promote enzyme diffusion and adsorption leading to 283 

the rapid formation of widened pores, cavities and channels (Dhital et al., 2010). Additionally, 284 

adhesion of cells to starch granules was reported to vary among strains and starch types 285 

(Crittenden et al., 2001) and bacteria attached to a surface showed more resistance to hostile 286 

environments (Wang et al., 1999). Thus, a possible approach to increase bacterial survival is the 287 

selection of starch types for probiotic bacteria according to bacterial adherence, which is related to 288 

bacterial surface proteins that particularly bind to α-1,4-linked glucose saccharides (Crittenden et 289 

al., 2001). Encapsulation of the probiotics in the starch system can be obtained without addition of 290 

gelling agents or adjustment of pH, while the ionic polysaccharides in presence of appropriate salt 291 

or ionic condition could form gel/matrix that can entrap the bacteria. Thus, the porous maize 292 
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starch could be more processing friendly. A direct comparison of these different encapsulation 293 

matrices would be interesting to determine in future work. 294 

Considering the different enzymatic treatments, the changes in digestion time or amylase type did 295 

not yield any difference in the performance of starch materials, though there was some difference 296 

in microstructure between 120-min and 30-min hydrolyzed starch (Fig. 1). We found that the three 297 

types of amylase (P, PA, FA) were each effective to create porous structure. On the other hand, the 298 

digestion time may affect release properties of L. plantarum.  299 

Considering the application point of view, the breakdown of the porous starch as wall material in 300 

the digestive tract forms spaces for cell release. Thus, the release pattern of the encapsulated 301 

bacteria in the starch system is associated with enzyme sensitivity of the prepared starches. 302 

Shrestha et al. (2012) investigated changes of supramolecular/molecular structure of maize starch 303 

during in vitro digestion and concluded that the granular architecture plays a major role in 304 

controlling starch susceptibility to digestive enzymes. The characterization of structural features of 305 

the modified starches is needed in future work to yield more plentiful information to predict the 306 

release pattern of the starch encapsulation.  307 

4.2 Drying process 308 

Probiotic products are widely processed into a dried form which is stable during preservation and 309 

convenient in handling. Freeze drying is frequently used in probiotic production procedures and 310 

has a significant effect on the bacterial survival. The cellular membrane can be damaged by the 311 

formation of intracellular ice crystals during the freezing process (Conrad, Miller, Cielenski, & de 312 

Pablo, 2000) and the removal of water during the subsequent sublimation process. Cryoprotectant 313 
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agents have been employed to reduce the loss of viability due to the freeze-drying process (Capela, 314 

Hay, & Shah, 2006). Osmotic differences between bacteria and their external environment can be 315 

reduced when compatible cryoprotectant agents are used (Kets, Teunissen, & Bont, 1996). Sultana 316 

et al. (2000) demonstrated that incorporation of Hi-maize starch into an alginate formulation 317 

increased viability of encapsulated Lactobacillus casei in wet or freeze dried beads. Likewise, 318 

Etchepare et al. (2016) found that the initial probiotic count of alginate microcapsules containing 319 

Hi-maize (7.69 log CFU g-1) was higher than the alginate microcapsules alone (6.65 log CFU g-1) 320 

after freeze-drying. Akalın and Erişir (2008) added prebiotics including inulin and oligofructose 321 

into ice cream and found greater survival to freezing, thus indicating that prebiotics can have a 322 

positive effect on bacteria viability. In this work, porous starch resulted in higher recovery of 323 

encapsulated bacteria after the drying process (Table 1), suggesting that replacement of native 324 

starch with porous starch may further reduce the loss of viable cells during drying. Minor cold 325 

shocks prior to freeze-drying, to purposefully induce bacterial stress responses, could also be 326 

considered.  327 

4.3 Viability test  328 

The low survival rate of lactic acid bacteria under GIT conditions is a problem to ensure that 329 

sufficient quantities reach the large intestine to exhibit functionality. Stimulated gastrointestinal 330 

conditions have been widely applied to evaluate the effectiveness of encapsulation methods. There 331 

was a greater reduction of free L. plantarum under low acid environments than that encapsulated 332 

by starch matrix (Fig. 3 A). The bile salt reductions in plate counts tended to be less for bacteria 333 

encapsulated in porous starches than for free and native-encapsulated cells, but these differences 334 
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were not significant (Fig. 3 B). L. plantarum was more sensitive to acidity than bile salts, which is 335 

in agreement with previous reports (Ding & Shah, 2007; Liong & Shah, 2005). Bacterial viability 336 

is impaired during exposure to acids because energy consumption is increased to maintain a 337 

neutral intracellular pH level and metabolic reactions are inhibited (Cotter & Hill, 2003). Although 338 

the effect of acid and bile salts are investigated, the activity salivary amylase and pepsin in vivo, 339 

may affect the survivability of the probiotic cells. Thus, more detailed investigation in vivo or in 340 

vitro models is needed to elucidate the effect of oral-gastric conditions of cells viability.   341 

Lactobacillus acidophilus LA1 entrapped by alginate and starch demonstrated better survival at 342 

low pH and high bile salt concentrations (Sabikhi et al., 2010). L. acidophilus CICC 6075 343 

absorbed by porous starch and subsequently coated with alginate showed enhanced survival after 344 

incubation at pH 1.5 for 3 h (Xing et al., 2014). Cell viability during lyophilization and storage 345 

was significantly improved by filling starch into a Ca–alginate hydrogel (Chan et al., 2011). 346 

Physically modified resistant starch in combination with whey protein isolate in 347 

microencapsulated L. rhamnosus GG formulations also had a positive effect on bacterial survival 348 

in pH 3.5 citrate buffer (Ying et al., 2013). 349 

However, there are conflicting studies which have reported that starch granules have no effect on 350 

stability of probiotic bacteria. The technology to encapsulate two Bifidobacterium longum strains 351 

with partially digested potato starch as wall material and amylose as coating material was found to 352 

result in similar survival rate as free form bacteria during storage (Lahtinen et al., 2007). 353 

O'Riordan, Andrews, Buckle, and Conway (2001) reported that octenyl succinated waxy maize 354 

starch did not affect viability of Bifidobacterium cells during exposure to ambient temperature 355 
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(19-24 °C) and acid stress. Thus, differences of the encapsulation techniques, bacteria strains and 356 

viability test procedures likely had impact on the results of previous attempts to increase probiotic 357 

survival. The acid and bile resistance are suggested to be strain-specific (Ding & Shah, 2007; 358 

Liong & Shah, 2005).  359 

Temperature is a critical factor for the viability of probiotic bacteria. Inactivation of cells at high 360 

temperature can be related to many factors including fatty acid oxidation, DNA damage, protein 361 

denaturation and the formation of free radicals (Castro, Teixeira, & Kirby, 1997). The production 362 

of compounds including metabolic acids and bacteriocins are possibly responsible for cell death at 363 

high temperature (Fu & Chen, 2011). Compared to free cells, loss of viable cells at the high 364 

temperature can be reduced by the encapsulation method (Fig. 4). The result is consistent with the 365 

observation of Xing et al. (2014).  366 

4.4 Microenvironment of porous starch  367 

We aimed to immobilize the probiotic bacteria in starch matrices with the preservation of desired 368 

biological activity. The confocal micrographs showed that enlarged cavities of modified starch 369 

trapped the rod shaped bacteria (Fig. 2). The confinement of the cells to starch cavities or surfaces 370 

was hypothesized to facilitate the separation of cells from lethal agents in hostile environments. 371 

The changes in starch microstructure resulted in the improvement of initial viable bacteria (Table 372 

1). The hollow structure may allow the microcapsule to contain more bacteria and therefore 373 

presumably to have more cells separated from bacterial culture. Bacteria entrapped inside porous 374 

structure possibly had less exposure to low temperature which subsequently triggers formation of 375 

ice crystals. Another possible reason is that the molecular mobility of water is depressed by porous 376 
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structures and thus cell dehydration could be decreased, because the adsorption capacity of maize 377 

starch was shown to increase after enzymatic modification (Gao et al., 2013; Wang et al., 2015).  378 

The starch matrices also offered effective protection against acidic solution (Fig.3 A), possibly by 379 

reducing exposure to H+ ions in bulk solution. However, unmodified starch and modified starches 380 

offered similar protection to the probiotic bacteria under acid, bile and heat treatments, which may 381 

suggest that physical isolation within the porous structure is not sufficient to protect probiotic 382 

bacteria from the surrounding environments. The gelatinized starch solution (coating material) 383 

might not be able to sufficiently seal the pores of the porous starch. 384 

5. Conclusion 385 

In this work, we modified maize starch to obtain porous structures for the entrapment of probiotic 386 

bacteria. The results showed that enzymatic modification is an effective method to increase 387 

encapsulation yields when starch-based material is used for encapsulation and further ensures that 388 

the number of viable bacteria remain above the minimum dosage as requirement during food 389 

processing and digestion in the body. Major opportunities for enhancing synergistic properties 390 

between resistant starch and probiotics may come from rational selection of the kind of starches 391 

used for encapsulation in combination with accurate manipulation of preparation techniques. 392 
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Table 1  519 
Viable bacteria count (log CFU g-1) of encapsulated L. plantarum 299v after the 520 
microencapsulation process, incubation in high acid (pH=2.0), bile salt (3% w/v) condition and 521 
heat (60 oC) condition. * indicates statistically significant difference (p < 0.05) within the same 522 
column. The viability data were from duplicate analysis of duplicate samples (n= 2). 523 

 

Wall materials 

 

Initial count 

Acid Bile salt Heat 

1h 2h 2h 4h 15 min 

Native 7.77±0.41* 6.69±0.17* 6.15±0.36 6.95±0.62* 6.04±0.47* 4.87±0.48* 

PA30 9.11±0.14 8.34±0.37 7.55±0.85 8.34±0.06 8.13±0.49 6.40±0.13 

PA120 9.06±0.13 8.29±0.26 7.29±0.96 8.37±0.05 8.00±0.30 6.60±0.21 

P30 9.21±0.08 8.27±0.32 7.48±0.74 8.55±0.08 8.15±0.25 6.51±0.15 

P120 8.94±0.05 8.23±0.14 7.68±0.37 8.46±0.10 7.99±0.42 6.50±0.08 

FA30 8.95±0.16 7.99±0.08 7.12±0.03 8.32±0.16 7.98±0.58 6.19±0.27 

FA120 8.96±0.37 8.05±0.23 7.25±0.29 8.28±0.14 7.97±0.51 6.43±0.15 

 524 
  525 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

24 
 

Figure Captions  526 
 527 
 528 
Fig. 1. Scanning electron micrographs of starch granules before (A) and after enzymatic digestion: 529 
control (B), pancreatic α-amylase (C and D), pancreatin (E and F), and fungal α-amylase (G and 530 
H); 30-min digestion (C, E and G), and 120-min digestion (D, F and H). 531 
 532 
Fig. 2. CLSM images of (A) unmodified starch with cells attached to the granule surface, (B) 533 
30-min hydrolyzed microcapsule and (C) 120-min hydrolyzed microcapsule with cells trapped 534 
inside (arrow shows large pore opening). 535 
 536 
Fig. 3. Reduction of viable count of free or microencapsulated L. plantarum 299v during 537 
incubation (37 °C) in (A) high acid (pH=2.0) and (B) bile salt (3% w/v) conditions. Mean and 538 
standard errors were calculated using data of duplicate analysis of duplicate samples (n= 2). * 539 
indicates statistically significant difference (p < 0.05) at the same time point. 540 
 541 
Fig. 4. Reduction of viable count of free or microencapsulated L. plantarum 299v after exposure 542 
to heat (60 °C) in sodium phosphate buffer (pH=6.3) for 15 min. Mean bars with different letters 543 
(a-b) are significantly different (p < 0.05). Mean and standard errors were calculated using data of 544 
duplicate analysis of duplicate samples (n= 2). 545 
  546 
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Fig. 1. 547 
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Fig. 2. 552 
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Fig. 3.  555 
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Fig. 4. 559 
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Highlights 

• Amylase creates ample void space in maize starch allowing bacteria to diffuse into 
• Porous starch allows for a high probiotic loading efficiency 
• Porous starch offers enhanced protection to hostile conditions 

• The viable counts in porous starch remain higher than native starch 

 


