45 research outputs found

    Inflationary cosmology and fundamental physics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2010.Cataloged from PDF version of thesis.Includes bibliographical references.This thesis is a collection of several papers at the interface between cosmology, particle physics, and field theory. In the first half, we examine topics that are directly related to inflation: axions, string theory, and non-minimally coupled fields. In particular, we constrain the allowed parameter space of inflationary axion cosmology, identifying a classic window and an anthropic window; we discuss inflation in string theory, proving a no-go theorem for a class of string models; and we examine the quantum field theory governing inflation driven by non-minimally coupled fields, which is relevant to Higgs-inflation. In the second half, we examine other topics: oscillons, entanglement entropy, and the Casimir effect. In particular, we compute the quantum decay of oscillons, finding it to be dramatically different to the classical decay; we establish finite contributions to the entanglement entropy between a pair of regions, including a finite area law; and we compute the Casimir force in a closed geometry, finding an attractive force and invalidating claims of repulsion.by Mark Peter Hertzberg.Ph.D

    Melting of persistent double-stranded polymers

    Full text link
    Motivated by recent DNA-pulling experiments, we revisit the Poland-Scheraga model of melting a double-stranded polymer. We include distinct bending rigidities for both the double-stranded segments, and the single-stranded segments forming a bubble. There is also bending stiffness at the branch points between the two segment types. The transfer matrix technique for single persistent chains is generalized to describe the branching bubbles. Properties of spherical harmonics are then exploited in truncating and numerically solving the resulting transfer matrix. This allows efficient computation of phase diagrams and force-extension curves (isotherms). While the main focus is on exposition of the transfer matrix technique, we provide general arguments for a reentrant melting transition in stiff double strands. Our theoretical approach can also be extended to study polymers with bubbles of any number of strands, with potential applications to molecules such as collagen.Comment: 9 pages, 7 figure

    Nonperturbative dynamics of reheating after inflation: A review

    Get PDF
    Our understanding of the state of the universe between the end of inflation and big bang nucleosynthesis (BBN) is incomplete. The dynamics at the end of inflation are rich and a potential source of observational signatures. Reheating, the energy transfer between the inflaton and Standard Model fields (possibly through intermediaries) and their subsequent thermalization, can provide clues to how inflation fits in with known high-energy physics. We provide an overview of our current understanding of the nonperturbative, nonlinear dynamics at the end of inflation, some salient features of realistic particle physics models of reheating, and how the universe reaches a thermal state before BBN. In addition, we review the analytical and numerical tools available in the literature to study preheating and reheating and discuss potential observational signatures from this fascinating era.Kavli Institute for Cosmology, CambridgeUnited States. Dept. of Energy (Contract Number DE-SC00012567)Massachusetts Institute of Technology. Center for Theoretical Physic

    Theory of self-resonance after inflation. II. Quantum mechanics and particle-antiparticle asymmetry

    Get PDF
    We further develop a theory of self-resonance after inflation in a large class of models involving multiple scalar fields. We concentrate on inflaton potentials that carry an internal symmetry, but also analyze weak breaking of this symmetry. This is the second part of a two-part series of papers. Here in Part 2 we develop an understanding of the resonance structure from the underlying many-particle quantum mechanics. We begin with a small-amplitude analysis, which obtains the central resonant wave numbers, and relate it to perturbative processes. We show that the dominant resonance structure is determined by (i) the nonrelativistic scattering of many quantum particles and (ii) the application of Bose-Einstein statistics to the adiabatic and isocurvature modes, as introduced in Part 1 [M. P. Hertzberg et al., Phys. Rev. D 90, 123528 (2014)]. Other resonance structures are understood in terms of annihilations and decays. We set up Bunch-Davies vacuum initial conditions during inflation and track the evolution of modes including Hubble expansion. In the case of a complex inflaton carrying an internal U(1) symmetry, we show that when the isocurvature instability is active, the inflaton fragments into separate regions of ϕ-particles and anti-ϕ-particles. We then introduce a weak breaking of the U(1) symmetry; this can lead to baryogenesis, as shown by some of us recently [M. P. Hertzberg and J. Karouby, Phys. Lett. B 737, 34 (2014); Phys. Rev. D 89, 063523 (2014)]. Then using our results, we compute corrections to the particle-antiparticle asymmetry from this preheating era.Massachusetts Institute of Technology. Center for Theoretical PhysicsMassachusetts Institute of Technology. Undergraduate Research Opportunities ProgramUnited States. Dept. of Energy (Cooperative Research Agreement Contract DE-FG02-05ER41360)Natural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship

    Theory of self-resonance after inflation. I. Adiabatic and isocurvature Goldstone modes

    Get PDF
    We develop a theory of self-resonance after inflation. We study a large class of models involving multiple scalar fields with an internal symmetry. For illustration, we often specialize to dimension-four potentials, but we derive results for general potentials. This is the first part of a two part series of papers. Here in Part 1 we especially focus on the behavior of long-wavelength modes, which are found to govern most of the important physics. Since the inflaton background spontaneously breaks the time-translation symmetry and the internal symmetry, we obtain Goldstone modes; these are the adiabatic and isocurvature modes. We find general conditions on the potential for when a large instability band exists for these modes at long wavelengths. For the adiabatic mode, this is determined by a sound speed derived from the time-averaged potential, while for the isocurvature mode, this is determined by a speed derived from a time-averaged auxiliary potential. Interestingly, we find that this instability band usually exists for one of these classes of modes, rather than both simultaneously. We focus on backgrounds that evolve radially in field space, as set up by inflation, and also mention circular orbits, as relevant to Q-balls. In Part 2 [M. P. Hertzberg et al., Phys. Rev. D 90, 123529 (2014)] we derive the central behavior from the underlying description of many-particle quantum mechanics, and introduce a weak breaking of the symmetry to study corrections to particle-antiparticle production from preheating.Massachusetts Institute of Technology. Center for Theoretical PhysicsMassachusetts Institute of Technology. Undergraduate Research Opportunities ProgramUnited States. Dept. of Energy (Cooperative Research Agreement Contract DE-FG02-05ER41360)Natural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship

    CMBPol Mission Concept Study: Probing Inflation with CMB Polarization

    Get PDF
    We summarize the utility of precise cosmic microwave background (CMB) polarization measurements as probes of the physics of inflation. We focus on the prospects for using CMB measurements to differentiate various inflationary mechanisms. In particular, a detection of primordial B-mode polarization would demonstrate that inflation occurred at a very high energy scale, and that the inflaton traversed a super-Planckian distance in field space. We explain how such a detection or constraint would illuminate aspects of physics at the Planck scale. Moreover, CMB measurements can constrain the scale-dependence and non-Gaussianity of the primordial fluctuations and limit the possibility of a significant isocurvature contribution. Each such limit provides crucial information on the underlying inflationary dynamics. Finally, we quantify these considerations by presenting forecasts for the sensitivities of a future satellite experiment to the inflationary parameters.Comment: 107 pages, 14 figures, 17 tables; Inflation Working Group contribution to the CMBPol Mission Concept Study; v2: typos fixed and references adde

    Observing the Evolution of the Universe

    Full text link
    How did the universe evolve? The fine angular scale (l>1000) temperature and polarization anisotropies in the CMB are a Rosetta stone for understanding the evolution of the universe. Through detailed measurements one may address everything from the physics of the birth of the universe to the history of star formation and the process by which galaxies formed. One may in addition track the evolution of the dark energy and discover the net neutrino mass. We are at the dawn of a new era in which hundreds of square degrees of sky can be mapped with arcminute resolution and sensitivities measured in microKelvin. Acquiring these data requires the use of special purpose telescopes such as the Atacama Cosmology Telescope (ACT), located in Chile, and the South Pole Telescope (SPT). These new telescopes are outfitted with a new generation of custom mm-wave kilo-pixel arrays. Additional instruments are in the planning stages.Comment: Science White Paper submitted to the US Astro2010 Decadal Survey. Full list of 177 author available at http://cmbpol.uchicago.ed

    Fitness, motor competence and body composition as correlates of adolescent neck/shoulder pain: an exploratory cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adolescent neck/shoulder pain (NSP) is a common and sometimes debilitating problem. Several risk factors for this condition have been investigated, but no studies have previously evaluated associations between fitness, motor competence, body composition and adolescent NSP.</p> <p>Methods</p> <p>1608 males and females of mean age 14 years answered questions on their history of NSP (4 measures), and were tested for aerobic fitness, upper and lower limb power, trunk endurance, grip strength, shoulder flexibility, motor competence and anthropometric factors. Univariate and multivariate logistic regressions were used to test for associations between NSP and physical variables.</p> <p>Results</p> <p>There were significant gender differences for most physical and pain variables. After multivariate analysis, males had lower odds of NSP if they had reduced back endurance [OR: 0.66 (95% CI: 0.46–0.97)], reduced persistent control [0.42 (0.19–0.95], and increased muscle power [0.33 (0.12–0.94)], and higher odds of NSP if they had a higher basketball throw [2.47 (1.22–5.00)] and jump performance [3.47 (1.55–7.74)]. Females had lower odds for NSP if they had a reduced jump performance [0.61(0.41–0.92)], a better basketball throw [0.60(0.40–0.90)], lower shoulder flexibility [0.54 (0.30–0.98)] and a higher aerobic capacity [0.61 (0.40–0.93)], and higher odds for NSP if they had greater abdominal endurance [1.57(1.07–2.31)] and greater bimanual dexterity [1.77(1.18–2.65)]. Females showed a U shaped relationship between NSP and back endurance [low: 2.12 (1.20–3.74); high 2.12 (1.18–3.83)].</p> <p>Conclusion</p> <p>Adolescent NSP was associated with fitness and motor competence, although the associations varied with gender, and their strength was limited.</p

    Idarubicin dose escalation during consolidation therapy for adult acute myeloid leukemia

    Get PDF
    Purpose Higher doses of the anthracycline daunorubicin during induction therapy for acute myeloid leukemia (AML) have been shown to improve remission rates and survival. We hypothesized that improvements in outcomes in adult AML may be further achieved by increased anthracycline dose during consolidation therapy. Patients and Methods Patients with AML in complete remission after induction therapy were randomly assigned to receive two cycles of consolidation therapy with cytarabine 100 mg/m daily for 5 days, etoposide 75 mg/m daily for 5 days, and idarubicin 9 mg/m daily for either 2 or 3 days (standard and intensive arms, respectively). The primary end point was leukemia-free survival (LFS). Results Two hundred ninety-three patients 16 to 60 years of age, excluding those with core binding factor AML and acute promyelocytic leukemia, were randomly assigned to treatment groups (146 to the standard arm and 147 to the intensive arm). Both groups were balanced for age, karyotypic risk, and FLT3–internal tandem duplication and NPM1 gene mutations. One hundred twenty patients in the standard arm (82%) and 95 patients in the intensive arm (65%) completed planned consolidation (P, .001). Durations of severe neutropenia and thrombocytopenia were prolonged in the intensive arm, but there were no differences in serious nonhematological toxicities. With a median follow-up of 5.3 years (range, 0.6 to 9.9 years), there was a statistically significant improvement in LFS in the intensive arm compared with the standard arm (3-year LFS, 47% [95% CI, 40% to 56%] v 35% [95% CI, 28% to 44%]; P = .045). At 5 years, the overall survival rate was 57% in the intensive arm and 47% in the standard arm (P = .092). There was no evidence of selective benefit of intensive consolidation within the cytogenetic or FLT3–internal tandem duplication and NPM1 gene mutation subgroups. Conclusion An increased cumulative dose of idarubicin during consolidation therapy for adult AML resulted in improved LFS, without increased nonhematologic toxicity
    corecore