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We develop a theory of self-resonance after inflation. We study a large class of models involving
multiple scalar fields with an internal symmetry. For illustration, we often specialize to dimension-four
potentials, but we derive results for general potentials. This is the first part of a two part series of papers.
Here in Part 1 we especially focus on the behavior of long-wavelength modes, which are found to govern
most of the important physics. Since the inflaton background spontaneously breaks the time-translation
symmetry and the internal symmetry, we obtain Goldstone modes; these are the adiabatic and isocurvature
modes. We find general conditions on the potential for when a large instability band exists for these modes
at long wavelengths. For the adiabatic mode, this is determined by a sound speed derived from the time-
averaged potential, while for the isocurvature mode, this is determined by a speed derived from a time-
averaged auxiliary potential. Interestingly, we find that this instability band usually exists for one of these
classes of modes, rather than both simultaneously. We focus on backgrounds that evolve radially in field
space, as set up by inflation, and also mention circular orbits, as relevant to Q-balls. In Part 2 [M. P.
Hertzberg et al., Phys. Rev. D 90, 123529 (2014)] we derive the central behavior from the underlying
description of many-particle quantum mechanics, and introduce a weak breaking of the symmetry to study
corrections to particle-antiparticle production from preheating.
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I. INTRODUCTION

Cosmological inflation is a successful theory of the
early Universe [1–3], which accounts for the approximately
scale-invariant distribution of structures on large scales.
The structures arises from quantum fluctuations in the
inflaton scalar field(s) ϕ by stretching modes to large scales
due to inflation’s exponential expansion. Evidence for
inflation is increasing with detailed measurement of the
cosmic microwave background radiation [4–7], and this has
motivated the construction of many interesting theoretical
models [8–16].
Once inflation has ended, the quantum fluctuations are

no longer exponentially stretched. However, another inter-
esting phenomenon can sometimes come into play. As the
inflaton oscillates back and forth in its potential, it can
cause quantum fluctuations to grow rapidly—an example
of parametric resonance. For inflationary models, there can
be resonance in daughter fields (preheating) or to self-
resonance in the inflaton field itself. Often in the literature
the focus has been on coupling to daughter fields.
Various interesting and important work includes

Refs. [17–37]. For example, classic work [17,18] empha-
sized a coupling of the inflaton ϕ to a daughter field χ,
with interactions such as ∼g2ϕ2χ2 or ∼gϕχ2, which can
cause explosive growth in χ for some parameter regimes.

Other important possibilities include coupling to gauge
fields [27,29], Abelian or non-Abelian, coupling to fer-
monic fields [24,25], metric preheating [22], and so on. On
the other hand, self-resonance can occur for potentials with
nonlinearities, including the quartic term∼λϕ4, as discussed
in Ref. [19]. In fact this can lead to coherent structures, such
as oscillons, for negative λ; see Refs. [34–36]. Here we
focus on the important issue of self-resonance of the
inflaton, and assume couplings to other fields are small.
We will reorganize the analysis of self-resonance into a kind
of fluid description for long wavelengths, which appears to
go beyond the existing literature.
An important question is whether this self-resonance is

efficient, i.e., whether it causes significant resonance for
some range of k-modes. If so, this can provide a corre-
sponding enhancement in the power spectrum and possible
fragmentation of the inflaton field. Another important
question is whether these modes are only on very small
sub-Hubble scales, as is usually thought to be the case in
the post-inflationary era, or whether there can be some
enhancement for order Hubble or super-Hubble scales.
In some of the simplest models of single-field inflation,
such as ∼λϕ4, the answer to both of these questions is in the
negative, i.e., the resonance is rather inefficient [19] and is
usually restricted to highly sub-Hubble modes.
This is Part 1 of a series of two papers. In these papers

we consider multifield inflation models and more general
potentials. This much more general framework is motivated
from the point of view of high energy physics, as occurs in
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frameworks such as supersymmetry, string theory, and
beyond. For simplicity, we consider the potential V to
carry an internalOðN Þ symmetry, so it is only a function of

j~ϕj; this may be required by a gauge redundancy or, more
likely, due to an approximate global symmetry. We show
that in this class of models, the resonance is often efficient
and is predominantly given by somewhat long wave-
lengths. We then investigate the conditions under which
a large instability band exists for long wavelengths in the
post-inflationary era.
In the presence of multiple fields, there are correspond-

ingly multiple modes of excitations that can potentially be
resonant. In this first paper, we decompose these modes
into the adiabatic and isocurvature modes of the inflaton
and discuss under what conditions either of them has
significant resonance for long wavelengths. We show that
these modes exhibit a gapless spectrum, as required by the
Goldstone theorem. We show that the existence of an
instability in the adiabatic mode can be derived from a
sound speed associated with the pressure and density of the
background, while the existence of an instability in the
isocurvature mode can be derived from a speed associated
with the pressure and density of an auxiliary background
that we define. We find that the isocurvature mode can lead
to enhanced power on especially long wavelengths.
Finally, we study the case of two fields, and organize the

inflaton into a complex scalar. For background circular
motion in the complex plane, we derive the conditions for
breakup towards so-called Q-balls.
InPart 2 [38],we show that for potentials that give rise to an

unstable isocurvature mode, the inflaton fragments into
regions of particles and antiparticles. As an application, we
connect our analysis to inflationary baryogenesis models as
formulated by some of us recently in Refs. [39,40]. In
particular, we allow for a small breaking of the internal
symmetry and derive corrections to the particle asymmetry,
whichmaybe responsible for the late-timebaryonasymmetry.
The outline of this paper is as follows. In Sec. II we

present the class of models under investigation and outline
its equations of motion and Floquet theory. In Sec. III
we numerically solve the problem for dimension-four
potentials built out of a quadratic mass term and a quartic
interaction term. In Sec. IV we derive a type of auxiliary
potential that controls the behavior of the isocurvature
modes. In Sec. V we derive the general conditions on the
potential for when an instability exists at long wavelengths.
In Sec. VI we explore backgrounds that are circular in the
complex field plane. In Sec. VII we discuss our findings
and conclude. Finally, in the Appendix we generalize the
analysis to noncanonical kinetic terms.

II. SYMMETRIC THEORIES

Inflation is a theory of the early Universe driven by one
or more scalar fields coupled to gravity. Let us consider N

scalar fields. For convenience, we organize them into a
vector

~ϕ ¼ fϕ1;…;ϕN g: ð1Þ

In the case of two scalar fields, it is often useful to organize
ϕ into a complex scalar as follows:

ϕ ¼ ϕ1 þ iϕ2ffiffiffi
2

p : ð2Þ

We shall focus on this complex field later, but more
generally we shall focus on an arbitrary number of
fields N .
The inflationary action is, in general, some effective field

theory, since gravitation is known to be nonrenormalizable
in four dimensions. A reasonable assumption is that all
higher-order derivative corrections are suppressed by a
sufficiently large mass scale that they can be ignored.
This allows us to simply focus on the leading-order two-
derivative action. The most general form of the action may
then be written as (signature −þþþ, units ℏ ¼ c ¼ 1)

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
Gijð~ϕÞ∂μϕ

i∂μϕj − Vð~ϕÞ
�
ð3Þ

where MPl ≡ 1
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
is the reduced Planck mass. Here

we have expressed the action, without loss of generality, in
the Einstein frame where the gravity sector is canonical.
The matrixGij is the metric on field space, which in general
leads to a type of nonlinear sigma model. In the Appendix
we consider general forms for the kinetic energy. For now
we restrict attention to canonical kinetic energy with

Gij ¼ δij: ð4Þ

We note that this approximation is technically natural. That
is, if we assume the kinetic term is canonical, we find that
the quantum corrections tend to be small. The reason is
that this form of the kinetic term is broken only by
interactions between the fields in the potential sector,
which are suppressed by the strength of the couplings;
these couplings are typically small to achieve models of
inflation with ∼10−10 level variance in fluctuations, though
there can be exceptions.
Our freedom then lies in the choice of the potential Vð~ϕÞ.

For simplicity we consider models that carry an internal
rotational symmetry

ϕi → Ri
jϕ

j ð5Þ

where R is a rotation matrix acting on field space. Formally
this implies an OðN Þ symmetry and the potential may be

written as Vð~ϕÞ ¼ Vðj~ϕjÞ. This group of symmetries may,
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for instance, be enforced by a gauge redundancy (“gauge
symmetry”). It is nontrivial, however, to charge the inflaton
since one then needs to explain why the inflaton’s self-
interactions are small enough to ensure the ∼10−10 level
variance in fluctuations, though it is conceivable. Another
possibility is simply to appeal to an approximate global
symmetry. In Part 2 [38] we introduce a small breaking of
this global symmetry and show how to utilize results from
the symmetric theory to obtain the leading-order correc-
tions to the generation of particle number and baryogenesis.

A. Background evolution

Inflation inevitably forces the background space-time to
a flat Friedmann-Robertson-Walker metric

ds2 ¼ −dt2 þ aðtÞ2dx2 ð6Þ

where aðtÞ is the scale factor. Furthermore, in the slow-roll
phase of inflation, any angular motion in field space will be
redshifted away. This results in essentially radial motion in
field space. This is an attractor solution of inflation due to
the internal symmetry in field space.
This purely radial motion for the background shall

be denoted by the field ϕ0ðtÞ. We can, without loss of
generality, orient our field space coordinates, such that the
background points along the ϕN direction, i.e.,

~ϕ0ðtÞ ¼ f0;…; 0;ϕ0ðtÞg: ð7Þ

This background field satisfies the equation of motion

ϕ̈0 þ 3H _ϕ0 þ V 0ðϕ0Þ ¼ 0 ð8Þ

where H ¼ _a=a is the Hubble parameter. During slow-roll
inflation, the second and third terms here dominate. After
inflation, as is the focus of this work, the first and third
terms dominate and the second “friction” term is
subdominant.

B. Linearized perturbations

We shall denote the ϕN direction as “parallel” since it is
parallel to the background. The other N − 1 directions
shall be denoted as “orthogonal” since they are orthogonal
to the background. We can then expand the field around
the background as

~ϕðx; tÞ ¼ ~ϕ0ðtÞ þ δ~ϕðx; tÞ ð9Þ

where

δ~ϕðx; tÞ¼ fδϕ⊥1ðx; tÞ;…;δϕ⊥N−1ðx; tÞ;δϕ∥ðx; tÞg: ð10Þ

Expanding the scalar field equations to linear order, the
equations of motion for these perturbations are found to be

δϕ̈∥ þ 3H _δϕ∥ þ
�
k2

a2
þ V 00ðϕ0Þ

�
δϕ∥ ¼ G; ð11Þ

δϕ̈⊥i þ 3Hδ _ϕ⊥i þ
�
k2

a2
þ V 0ðϕ0Þ

ϕ0

�
δϕ⊥i ¼ 0 ð12Þ

where we have Fourier transformed to k-space. For the
orthogonal components, we have included an “i” index,
where i runs over i ¼ 1;…;N − 1; each equation carries
the same structure due to the symmetry. If we ignore linear
corrections to the metric, then we have G ¼ 0, and the right-
hand side of Eq. (11) becomes trivial. Otherwise, we can
include linear corrections to the metric, whose form depends
on gauge. For example, one can work in a gauge with flat
hypersurfaces, and one finds that local gravity gives rise to
the following correction on the right-hand side [41]:

G ¼ 1

a3M2
Pl

d
dt

�
a3 _ϕ2

0

H

�
δϕ∥: ð13Þ

We will comment on corrections from local gravity
further in Part 2 [38]. We note that there are no such
corrections from local gravity to the orthogonal modes in
Eq. (12); this is associated with the fact that these are
isocurvature modes, as we will explain later.

C. Floquet theory for self-resonance

The above set of equations can, in principle, be directly
solved numerically. However a tremendous amount of
analytical and semianalytical progress can be made with
an appropriate simplification, as we now describe.
After inflation has ended, the Hubble friction term

becomes subdominant to the other terms in these equations.
This is true for both the background equation and the
perturbation equations. The Hubble term is then primarily
responsible for a type of slow redshifting of the fields. This
effect shall be incorporated in Part 2 [38]. For now, we shall
focus on time scales that are short compared to the Hubble
time. On these time scales, the background field ϕ0

oscillates rapidly back and forth in the potential V. This
means that to a good approximation ϕ0ðtÞ is periodic.
Furthermore, in the Eqs. (11) and (12) the background will
provide a periodic pump for the perturbations through the
terms V 00ðϕ0ðtÞÞ and V0ðϕ0ðtÞÞ=ϕ0ðtÞ.
In fact an approximate way to handle the expansion is to

rescale the fields by defining ~ϕ≡ a3=2ϕ, which captures the
overall redshifting of the field. The effective mass can be
redefined appropriately, although the final result still carries
some mild redshift dependence. With this in mind, the
essential physics is captured by formally sending H → 0
and a → 1, and then each of the perturbation equations
become a form of Hill’s equation. We will reinstate these
redshifting effects in Part 2 [38]. So we are led, to good
approximation, to a form for the perturbations of
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δ̈ϕþ hðtÞδϕ ¼ 0 ð14Þ

where hðtÞ is the appropriate periodic pump. In our cases of
interest it is given by

hðtÞ ¼
(
k2 þ V 00ðϕ0ðtÞÞ for δϕ∥;

k2 þ V 0ðϕ0ðtÞÞ
ϕ0ðtÞ for δϕ⊥:

ð15Þ

It is convenient to write the second-order equation of
motion as a pair of first-order equations of motion. To do
this, let us define δπ ≡ _δϕ. Then Hill’s equation becomes

d
dt

�
δϕ

δπ

�
¼

�
0 1

−hðtÞ 0

��
δϕ

δπ

�
: ð16Þ

According to Floquet theory, the late-time behavior of this
system is determined by the eigenvalues of a certain matrix
that we now describe.
First, a complete basis of solutions comes from consid-

ering the following sets of initial conditions:

�
δϕðtiÞ
δπðtiÞ

�
¼

�
1

0

�
;

�
δϕðtiÞ
δπðtiÞ

�
¼

�
0

1

�
: ð17Þ

We organize this space of initial conditions into a matrix.
We then numerically evolve this matrix through one period
T of the background pump, giving an output matrix, which
we call M. The evolution through n periods is then
determined by the matrix Mn. For arbitrary initial con-
ditions, the solution after time t (assuming t is an integer
multiple of the period T) is given by

�
δϕðtÞ
δπðtÞ

�
¼ Mt=T

�
δϕðtiÞ
δπðtiÞ

�
: ð18Þ

The matrix M can be diagonalized in the standard way

M ¼ SDS−1 ð19Þ

where S is a matrix formed from the eigenvectors of M,
and D is a diagonal matrix comprised of the eigenvalues
λ1; λ2 of M. One can prove that the determinant of M
must be 1, so λ ¼ λ1 ¼ 1=λ2. The evolution can then be
written as

�
δϕðtÞ
δπðtÞ

�
¼ S

�
eμkt 0

0 e−μkt

�
S−1

�
δϕðtiÞ
δπðtiÞ

�
ð20Þ

where we have written the time dependence in terms of
an exponential ∼ expðμktÞ, where μk is the so-called
Floquet exponent

μk ¼
1

T
logðλÞ: ð21Þ

We have introduced a k subscript to indicate that the
value of the Floquet exponent depends on wave number.
If the real part of μk is nonzero, then there is exponential
growth of perturbations. Otherwise, if μk is purely
imaginary, then there is only an oscillatory, or stable,
evolution of perturbations.

III. MOTIVATION FROM
DIMENSION-FOUR POTENTIALS

Let us begin by considering the regime well after
inflation where the potential is well approximated by its-
operators. Since the potential is assumed to carry an
internal rotational symmetry, we can expand it as

Vð~ϕÞ ¼ V0 þ
1

2
m2j~ϕj2 þ λ

4
j~ϕj4 þ…: ð22Þ

For sufficiently small field amplitudes, these leading
dimension-four terms will dominate the dynamics. Such
a regime will normally arise after a sufficient amount of
redshifting has occurred. A counterexample would be if
some of the above coefficients happen to vanish; we will
consider this possibility in Part 2 [38]. For large amplitudes,
higher-order corrections to the potential may be important
(we mention some examples in Sec. V B 5).
We will explore the various possibilities, including λ > 0

and λ < 0. In the latter case, higher-order terms are
necessarily important to ensure stability of the potential
relevant for inflation. We will normally focus on a regular
mass term m2 > 0, but will discuss the tachyonic case
m2 < 0 also. The constant term V0 will be chosen to ensure
the vacuum energy is zero (the late-time dark energy is
irrelevant in this early era). So for m2 > 0, we choose
V0 ¼ 0, and for m2 < 0, we choose V0 > 0.
For now we truncate the potential to purely dimension

≤ 4 terms and numerically solve for the corresponding
Floquet exponent using the method of Sec. II C.

A. Positive vs negative quartic behavior

We begin by considering a regular mass term m2 > 0,

so the potential’s minimum is at ~ϕ ¼ 0. We compare the
cases in which the quartic coupling λ is either positive or
negative.
The background field ϕ0ðtÞ evolves under the equation

of motion

ϕ̈0 þm2ϕ0 þ λϕ3
0 ¼ 0: ð23Þ

This oscillates with some amplitude ϕa. We note that in
the case in which λ < 0, the potential exhibits a hilltop,
so there is a maximum amplitude. This is given by
ϕa;max ¼ m=

ffiffiffiffiffijλjp
. A natural dimensionless measure of

the amplitude is
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Φa ≡ ϕa

ffiffiffiffiffijλjp
m

ð24Þ

with Φa;max ¼ 1 when λ < 0.
The linearized perturbations solve Hill’s equation with

the h function

hðtÞ ¼
�
k2 þm2 þ 3λϕ2

0ðtÞ for δϕ∥;

k2 þm2 þ λϕ2
0ðtÞ for δϕ⊥:

ð25Þ

We have numerically solved for the corresponding Floquet
exponents, with results for the real part of μk given in Fig. 1.
In the left-hand panel we have λ > 0 and in the right-

hand panel we have λ < 0. In these contour plots we have
rescaled the Floquet exponent μk to a certain dimensionless
quantity involving the Hubble parameter and the Plank
massMPl. Although we have ignored the Hubble parameter
in the analysis, it is still useful to rescale μk by its value.
We will discuss these details in Part 2 [38]. The Hubble
parameter H is given from the Friedmann equation as

H2 ¼ 1

3M2
Pl

VðϕaÞ ð26Þ

where we have evaluated the energy density at the
amplitude of an oscillation, which is therefore purely given

by the potential energy. This naturally introduces the
Planck scale, which for the present purposes we would
like to scale out. As we discuss in Part 2 [38], the
dimensionless parameter that controls the amount of
resonance in the problem is r≡ ffiffiffiffiffijλjp

MPl=m. In Fig. 1
we plot the variable μk=ðrHÞ, which scales out all physical
parameters in the problem.
The resulting difference between positive and negative λ

should be clear from Fig. 1. For λ > 0 we see a total of
two bands that show up clearly. In the upper panel is a thin
band that begins for small amplitude at k ¼ ffiffiffi

3
p

m and
bends to the right; we shall explain this structure in Part 2
[38]. In the lower panel we see a thick band that begins at
small amplitude at k ¼ 0. This band continues to exist for
small k for any amplitude; we shall explain this structure
in Sec. V.
For λ < 0 we again see a total of two bands that show up

clearly. In the upper panel is a thin band that again begins
for small amplitude at k ¼ ffiffiffi

3
p

m and bends to the left; we
shall explain this structure in Part 2 [38]. In the upper panel
we also see a thick band that begins at small amplitude at
k ¼ 0. These bands only make sense up to the maximum
amplitude Φa, but in this regime the band continues to exist
for small k for any amplitude; we shall explain this structure
in Sec. V. Finally, in the lower panel, there is no additional
instability.

FIG. 1 (color online). Contour plot of the real part of the Floquet exponent μk for dimension-four potentials as a function of wave
number k and background amplitude ϕa with m2 > 0. In the left panel λ > 0 and in the right panel λ < 0. In the upper panel δϕ∥ and in

the lower panel δϕ⊥. We have plotted μk in units of rH where r≡ ffiffiffiffiffijλjp
MPl=m, k in units of m, and ϕa in units of m=

ffiffiffiffiffijλjp
.
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B. Adiabatic vs isocurvature behavior

In the previous discussion we saw that there are two
prominent instability bands: a rather thick band at small k
and a thin band that begins at k ¼ ffiffiffi

3
p

m (there should be
even much thinner bands at higher k also). This is true
whether λ is positive or negative. This gives the impression
that positive or negative is qualitatively similar.
We would like to discuss that in fact there is a huge

qualitative and quantitative difference between the positive
and negative λ cases. This is associated with the character
of the modes that are resonant. In particular, let us focus
on the dominant thick band that extends towards k ¼ 0.
This band is associated with δϕ⊥ for λ > 0 and δϕ∥ for
λ < 0. These two classes of fluctuations are physically very
different. In fact, as we will discuss in detail in Sec. V,
the δϕ∥ fluctuation is associated with an adiabatic mode,
while the δϕ⊥ fluctuations are associated with isocurvature
modes. The adiabatic mode is characterized by a density
perturbation, while the isocurvature mode is characterized
by a conserved number density perturbation; we shall
clarify all these details in Sec. V. Hence the sign of λ
determines whether it is the adiabatic or isocurvature modes
that are resonant for long wavelengths. In this paper we
shall get to the bottom of this interesting observation.
As a consequence of these numerical results, it follows

that in this case of a single field with λ > 0, there would be
no isocurvature mode, and hence relatively little instability.
This is the classic observation that pure ∼λϕ4 inflation
leads to inefficient resonance, as mentioned in the
Introduction. On the other hand, when there are multiple
fields driving inflation, there will exist isocurvature modes,
and hence there can be significant self-resonance even in
classic models with λ > 0.

C. Negative mass-squared behavior

For λ > 0 another possibility arises by allowing a
tachyonic mass m2 < 0. This gives rise to a type of
Higgs potential. Here we choose V0 ¼ m4=ð4λÞ in order
to bring the energy density at the true vacuum to zero.
The numerical results for the Floquet exponent in this case

are given in Fig. 2. Here we have chosen the dimensionless
amplitude Φa to be in the domain Φa ≥ 1, i.e., the field
amplitude can be taken to be greater than or equal to the
field’s vacuum expectation value ϕvev ¼ jmj= ffiffiffi

λ
p

.
We see that for the adiabatic mode δϕ∥, the instability now

begins at small amplitude at k ¼ 0, and for the isocurvature
mode δϕ⊥, the instability at small amplitude now begins at
k ¼ jmj= ffiffiffi

2
p

, as we will explain in Part 2 [38].
Furthermore, we see the complementary behavior that

for small k, there is either stability or instability above the
point ϕa ¼

ffiffiffi
2

p jmj= ffiffiffi
λ

p
. This is the critical amplitude

beyond which the field oscillates across the full double-
well potential. While for jmj= ffiffiffi

λ
p

< ϕa <
ffiffiffi
2

p jmj= ffiffiffi
λ

p
the

background only oscillates on one side of the double well.

This alters the effective sign of a type of pressure associated
with the background; we shall discuss these sorts of matters
and define the pressure in Sec. V.

IV. AUXILIARY POTENTIAL FOR
ISOCURVATURE MODES

In the previous section we showed numerical evidence
that there is a significant difference between the behavior of
the adiabatic modes and the isocurvature modes. This is
especially true with regards to the existence or nonexistence
of a large instability band at long wavelengths.
In the next section wewill show how the behavior at long

wavelengths of the adiabatic mode can be derived from a
sound speed associated with the pressure and density of
the background. Since this analysis will be so physical and

FIG. 2 (color online). Contour plot of the real part of the
Floquet exponent μk for dimension-four potentials as a function
of wave number k and background amplitude ϕa withm2 < 0 and
λ > 0. The upper panel is for δϕ∥ and the lower panel is for δϕ⊥.
We have plotted μk in units of rH where r≡ ffiffiffi

λ
p

MPl=jmj, k in
units of jmj, and ϕa in units of jmj= ffiffiffi

λ
p

.
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intuitive, we would like to be able to discuss the iso-
curvature modes in a similar way. It is therefore important
to be able to reorganize the equations that govern the
isocurvature modes into a form that resembles those of the
adiabatic modes. This will require the construction of a type
of auxiliary potential for the isocurvature modes that we
now describe.

A. Correspondence between modes

Recall the forms of the Hill’s functions h from Eq. (25).
We see that the h driving the adiabatic mode δϕ∥ is related
to the h driving the isocurvature mode δϕ⊥ by the
replacement

V 00ðϕ0Þ →
V 0ðϕ0Þ
ϕ0

: ð27Þ

Wewould like to bring the second expression into the same
form as the first. To do so we need to construct an auxiliary
potential ~V, with background solution ~ϕ0, for the isocur-
vature mode that satisfies

~V 00ð ~ϕ0Þ ¼
V 0ðϕ0Þ
ϕ0

: ð28Þ

It is important to note that the primes here refer to each
potential’s respective arguments.
The equation of motion for ~ϕ0 is, by definition, the

standard equation of motion with respect to its potential ~V
(again ignoring the Hubble parameter)

̈~ϕ0 þ ~V 0ð ~ϕÞ ¼ 0: ð29Þ
Let us take a time derivative of this equation and use the
chain rule

~ϕ
:::

0 þ ~V 00ð ~ϕÞ _~ϕ ¼ 0: ð30Þ
Then by substituting Eq. (28) into this, we see that this
corresponds to the equation of motion for ϕ0 if we identify
~ϕ0 as being related to ϕ0 in the following way:

_~ϕ0 ¼
ϕ0

~t
ð31Þ

where ~t is an arbitrary (nonzero) constant with units of time,
whose value can be selected for convenience. Equivalently,
this relationship can be solved for ~ϕ0 as

~ϕ0ðtÞ ¼
1

~t

Z
t
dt0ϕ0ðt0Þ: ð32Þ

Another way to see this relationship between the pump
ϕ0ðtÞ that controls the adiabatic mode and the pump ~ϕ0ðtÞ
that controls the isocurvature mode is as follows. In Sec. V

wewill relate δϕ∥ to the energy density perturbation δε, and
relate δϕ⊥ to the number density perturbation δn; these
definitions and relationships shall be discussed there. We
find that (again ignoring Hubble expansion for now) the
linearized equations of motion for these perturbations are

δ̈ε − 2
ϕ̈0

_ϕ0

_δεþ k2δε ¼ 0; ð33Þ

δ̈ni − 2
_ϕ0

ϕ0

_δni þ k2δni ¼ 0 ð34Þ

where we are again in k-space. So we see quite directly that
to pass from δε to δn requires replacing _ϕ0 by ϕ0 (up to a
multiplicative constant) in agreement with Eq. (31). In fact
one can go further and construct a quadratic action for each
of these physical variables of the form

S½δ� ¼
Z

d4x
1

f2ðtÞ
�
1

2
_δ2 −

1

2
ð∇δÞ2

�
ð35Þ

where fðtÞ ∝ _ϕ0ðtÞ for δ → δε and fðtÞ ∝ ϕ0ðtÞ for
δ → δn, again showing the correspondence.

B. Integral form for general potentials

We now show how to solve for the auxiliary potential ~V
for any potential V. For simplicity, we assume that the true
minimum of the potential is at ϕ ¼ 0. However, an extension
to the tachyonic mass m2 < 0 cases is straightforward.
First, since the potential V is assumed to carry an internal

rotational symmetry, it should be some series in ϕ2
0, rather

than having any odd powers of ϕ0. To make this explicit, it
is useful to introduce the variable

ξ0 ≡ 1

2
ϕ2
0 ð36Þ

where the factor of 1=2 is for convenience. Using the chain
rule, Eq. (28) may be rewritten as

~V 00ð ~ϕ0Þ −
∂V
∂ξ0 ¼ 0: ð37Þ

Using the relationship (31) and the conservation of energy
of the ~ϕ0 field, we can rewrite ξ0 as

ξ0 ¼
1

2
~t2 _~ϕ

2 ¼ ~t2ð ~Vð ~ϕaÞ − ~Vð ~ϕ0ÞÞ ð38Þ

where we have introduced the amplitude of the ~ϕ0

oscillations as ~ϕa. Using the chain rule, we can then
rewrite Eq. (37) as
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~V 00ð ~ϕ0Þ þ
1

~t2
∂V
∂ ~V

¼ 0: ð39Þ

Now this has the structure of an equation of motion for ~V as
a function of ~ϕ driven by a potential V=~t2. Such an equation
always possesses a first integral, which is

1

2
~V 0ð ~ϕ0Þ2 þ

1

~t2
Vð~t2ð ~Vð ~ϕaÞ − ~Vð ~ϕ0ÞÞÞ ¼

1

2
~V 0ð ~ϕaÞ2: ð40Þ

Now using the equation of motion evaluated at ~ϕ0 ¼ ~ϕa

(where _~ϕ0 ¼ 0) we obtain

1

2
~V 0ð ~ϕaÞ2 ¼

1

~t2
VðξaÞ ð41Þ

and the relationship between the amplitudes is

~Vð ~ϕaÞ ¼
ξa
~t2
: ð42Þ

Inserting this into Eq. (40) allows us to construct the
following integral solution:

Z
~V

0

d~vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðξaÞ − 2Vðξa − ~t2 ~vÞ

p ¼
~ϕ0

~t
: ð43Þ

Note that in the integrand, the symbol ~v is the “dummy
variable” of integration. In principle, for a given choice
of V and amplitude ϕa, this integral can be performed and
inverted to find the auxiliary potential ~V ¼ ~Vð ~ϕ0Þ. It is
important to note that such a potential will depend on the
choice of amplitude ϕa.

C. Application to dimension-four potentials

Let us illustrate this with the dimension-four potentials
we analyzed in Sec. III. Recall that (for m2 > 0) the
potential is

VðϕÞ ¼ 1

2
m2ϕ2 þ 1

4
λϕ4: ð44Þ

When rewritten in terms of the ξ variable, this is
VðξÞ ¼ m2ξþ λξ2. We substitute this into the integral
solution of Eq. (43) and carry out the integral. We find
the integral is an inverse cosine. Upon inversion, the
resulting auxiliary potential for the isocurvature modes is

~Vð ~ϕÞ ¼ m2 þ λϕ2
a

2λ~t2
ð1 − cosð

ffiffiffiffiffi
2λ

p
~t ~ϕÞÞ: ð45Þ

This representation is useful for λ > 0. While for λ < 0 we
can rewrite it as

~Vð ~ϕÞ ¼ m2 − jλjϕ2
a

2jλj~t2 ðcoshð
ffiffiffiffiffi
2λ

p
~t ~ϕÞ − 1Þ: ð46Þ

Also the auxiliary field amplitude ~ϕa can be determined
from the original physical field’s amplitude ϕa by

~ϕa ¼
1ffiffiffiffiffi
2λ

p
~t
tan−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λϕ2

a

m2
þ λ2ϕ4

a

m4

r �
: ð47Þ

When λ < 0 this becomes an inverse hyperbolic tangent
function.
A plot of the original potential V that controls the

adiabatic mode and the auxiliary potential ~V that controls
the isocurvature modes is given in Fig. 3 for λ > 0 (left
panel) and λ < 0 (right panel). We see the complementary
behavior of the potentials. Compared to a quadratic
potential ∼ 1

2
m2ϕ2, for λ > 0, V grows more quickly and

~V grows more slowly, while for λ < 0, V grows more
slowly and ~V grows more quickly.
For small amplitudes, ϕa ≪ m=

ffiffiffiffiffijλjp
, we can Taylor

expand the auxiliary potential ~V. For convenience we pick
~t ¼ 1=m and we find

FIG. 3 (color online). Potential function for the dimension-four theory with m2 > 0. In the left panel is λ > 0 and in the right panel
λ < 0. The blue curves (upper on left, lower on right) are the fundamental potentials VðϕÞ, the red curves (lower on left, upper on right)
are the auxiliary potentials ~Vð ~ϕÞ, and the black dashed curves are the quadratic potentials ∼ 1

2
m2ϕ2. We have taken ~t ¼ 1=m and fixed ϕa

to be small to define the ~V function.
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~Vð ~ϕÞ ¼ 1

2
m2 ~ϕ2 −

1

12
λ ~ϕ4 þ � � � : ð48Þ

Comparing Eq. (44) to Eq. (48) we see that the quartic
coupling λ has been effectively replaced by

λ → −
λ

3
: ð49Þ

We shall also derive this result from a small-amplitude
analysis in Part 2 [38].

V. GENERAL ANALYSIS FOR LONG-
WAVELENGTH MODES

In this section we show that the shape of the above
potentials (V and ~V) rather directly determines the exist-
ence or nonexistence of a large instability band at long
wavelengths. To do so we first discuss the physical
structure of the modes and then prove general results about
their behavior based on pressure and density arguments.

A. Goldstone modes

The oscillating background ~ϕ0ðtÞ breaks two important
symmetries of the underlying theory. First, since it is time
dependent, it breaks time-translation symmetry. Second,
since its motion is radial, it must choose some direction in
field space and hence it breaks the internal rotational
symmetry. This has important consequences at long wave-
lengths. The low-energy states of the theory are subject to
the Goldstone theorem, which requires that each of these
broken symmetries is associated with massless modes.
Note that the theorem applies to the low-energy, or

“effective” theory, which is applicable at long wavelengths.
In order to construct the effective theory, we shall have to
perform a type of time averaging in order to coarse grain the
system sufficiently; we shall see this in Secs. V B and V C.
The associated massless (or “gapless”) modes are asso-

ciated with the corresponding conserved quantities. In
particular, the Goldstone mode associated with the breaking
of time-translation symmetry is the energy density δε, since
the integrated energy density is conserved; this is an adiabatic
mode. The Goldstone modes associated with the breaking of
the internal rotational symmetry are thenumber densities δni,
since the integrated number densities are conserved; these are
isocurvaturemodes.We shall rigorously count the number of
these isocurvature modes and construct all these various
quantities carefully in the next subsections.

B. Adiabatic mode δε

Let us begin be constructing the full energy density

stored in the field ~ϕ. It is given by

ε ¼ 1

2
j _~ϕj2 þ 1

2
j∇~ϕj2 þ Vð~ϕÞ ð50Þ

where we allow for N fields and a potential V that carries
an internal symmetry, as before. The homogeneous back-
ground energy density is given by

ε0 ¼
1

2
_ϕ2
0 þ Vðϕ0Þ ð51Þ

where the field ~ϕ0 is assumed to point in a specific
direction, such as Eq. (7).
The first-order perturbation is given by

δε ¼
�
_ϕ0

∂
∂tþ V 0ðϕ0Þ

�
δϕ∥: ð52Þ

We see that the energy density is some linear time-
dependent operator acting on the parallel perturbation
δϕ∥ and is independent of the orthogonal perturbations
δϕ⊥i at this order. Instead we shall see that δϕ⊥i is relevant
for the modes of Sec. V C. Hence perturbations in δϕ∥
cause energy density perturbations without affecting the
relevant abundance of particle species. So this is, by
definition, an adiabatic mode.

1. Equation of motion

We would like to construct a second-order equation of
motion for the energy density perturbation δε. To do so we
take time derivatives of the expression for δε in Eq. (52).
The first time derivative can be written as

_δε ¼ ðϕ̈0 þ V 0ðϕ0ÞÞ _δϕ∥ þ ðδ̈ϕ∥ þ V 00ðϕ0Þδϕ∥Þ _ϕ0: ð53Þ

The first term in parentheses vanishes by the equation of
motion for ϕ0, while the second term in parentheses can be
simplified by the equation of motion for δϕ∥. This gives

_δε ¼ −k2 _ϕ0δϕ∥: ð54Þ

We now take another time derivative which gives

δ̈ε ¼ −k2ϕ̈0δϕ∥ − k2 _ϕ0
_δϕ∥: ð55Þ

We now use Eq. (52) to eliminate _ϕ0
_δϕ∥ and the equation of

motion for ϕ0 to eliminate ϕ̈0, which gives

δ̈εþ k2ðδε − 2V 0ðϕ0Þδϕ∥Þ ¼ 0: ð56Þ

This now begins to take on the form of a wave equation for
δε (recall k2 → −∇2) for a massless mode; however the
term V 0ðϕ0Þδϕ∥ prevents this from being precise. One way
to proceed, is to now eliminate δϕ∥ using Eq. (54). This
leads to Eq. (33) that we mentioned earlier. However, in
order to organize this properly into a wave equation, we
prefer to keep this form of the second-order equation for δε
and proceed to do some form of coarse graining, as we now
describe.
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2. Time average

In this context, coarse graining means to average over
sufficiently long time scales; this loses information for
high k (high-frequency modes) but allows us to probe
the long-wavelength physics. To do this we perform a
time average of Eq. (56) over one period of the
background.
Now, in the infinite-wavelength limit, δε becomes uni-

form in space and therefore it must be constant in time since
energy is conserved. This means that for sufficiently long
wavelengths, δε should be slowly varying in time compared
to δϕ∥; the energy density is plotted later in Fig. 6 where
we see its slow evolution in the upper right panel, compared
to the rapid oscillations in the parallel fluctuations in the
upper left panel. Hence when we average over the rapid
oscillation of the background ϕ0ðtÞ there will be negligible
alteration in δε, i.e.,

hδεi ≈ δε: ð57Þ
On the other hand, we have to be very careful when we time
average the term V 0ðϕ0Þδϕ∥ in Eq. (56), since both V 0ðϕ0Þ
and δϕ∥ are rapidly varying in time; in Fig. 6 we plot this
rapid oscillation of δϕ∥ in the upper left panel. So we have

δ̈εþ k2ðδε − 2hV 0ðϕ0Þδϕ∥iÞ ¼ 0: ð58Þ

Now the term that we need to time average is multiplied by
k2. So at long wavelengths, we may evaluate this quantity
in the k → 0 limit, for otherwise we would be tracking
subleading corrections. In this limit, such a quantity can
only be a function of the amplitude that we let ϕ fall from;
this is a combination of the background amplitude ϕa and a
perturbation. Similarly, the energy density itself is only a
function of the amplitude in this long-wavelength limit.
Hence we must be able to trade one for the other. Using a
type of “chain rule” this is

hV 0ðϕ0Þδϕ∥i ¼
dhVi
dhε0i

δε ð59Þ

where hVi and hε0i are the time average of the potential and
energy density evaluated on the background solution ϕ0,
respectively. Substituting this into Eq. (58) gives

δ̈εþ k2
�
1 − 2

dhVi
dhε0i

�
δε ¼ 0 ð60Þ

which is indeed of the form of a wave equation. Note that
by construction, the time-averaged quantities in brackets
here are time and space independent.

3. Sound speed cS
Now it is useful to express the above derivative in terms

of a more physical quantity; the time-averaged pressure.

The time-averaged pressure and energy density of the
background are given by

hp0i ¼
�
1

2
_ϕ2
0

	
− hVi; ð61Þ

hε0i ¼
�
1

2
_ϕ2
0

	
þ hVi: ð62Þ

So the difference is

hp0i − hε0i ¼ −2hVi: ð63Þ

A derivative with respect to hε0i evidently gives

c2S ¼ 1 − 2
dhVi
dhε0i

ð64Þ

where

c2S ≡ dhp0i
dhε0i

ð65Þ

is the sound speed squared. Substituting this into Eq. (60)
leads to the sound wave equation

δ̈εþ c2Sk
2δε ¼ 0: ð66Þ

This proves that indeed the adiabatic perturbations have a
gapless spectrum, even though the field fluctuations δϕ∥
generally do not.
This shows that the stability or instability of δε is

determined by the value of the squared sound speed c2S.
If c2S > 0, then long-wavelength modes will oscillate. On
the other hand, if c2S < 0, then long-wavelength modes will
grow exponentially. Indeed we can identify the Floquet
exponents as

μk ¼ �icSk: ð67Þ

We see that the strength of the instability vanishes in the
k → 0 limit, but this band can still be very important at
small, but finite k, as we saw numerically in the previous
section.
Now in order to evaluate c2S we need a recipe to evaluate

hε0i and hp0i. It is useful to express these as functions of
the amplitude of oscillation ϕa. For the energy density hε0i
it is trivial because energy is conserved, giving

hε0i ¼ VðϕaÞ: ð68Þ

For the pressure hp0i it is more nontrivial since pressure
oscillates throughout the background cycle. Using Eq. (63)
we may write it as
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hp0i ¼ VðϕaÞ −
2

TðϕaÞ
Z

TðϕaÞ

0

dtVðϕ0ðtÞÞ ð69Þ

where T is the period of the pump and
R
T
0 dtV is the

integrated potential over a cycle. Using the equations of
motion, they can be expressed as

TðϕaÞ ¼
Z

ϕa

ϕb

dϕ0

ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðϕaÞ − Vðϕ0Þ

p ; ð70Þ

Z
TðϕaÞ

0

dtVðϕ0ðtÞÞ ¼
Z

ϕa

ϕb

dϕ0

ffiffiffi
2

p
Vðϕ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VðϕaÞ − Vðϕ0Þ
p ð71Þ

where ϕb is the amplitude the field reaches on the other side
of its potential. For most applications, we will consider
expanding around a symmetric point, giving ϕb ¼ −ϕa, but
if we consider the m2 < 0 case, then the relationship is
more complicated.
Then with the (time-averaged) pressure and energy

density given as function of amplitude ϕa the sound speed
squared can be computed using the chain rule

c2S ¼
dhp0i
dϕa

·

�
dhε0i
dϕa

�
−1
: ð72Þ

Since the energy density is taken to be an increasing
function of amplitude, the sign of c2S is determined by the
sign of the derivative of pressure with respect to amplitude.
This leads to a very physical understanding of the fate of
the adiabatic mode: if pressure increases with amplitude,
the mode is stable, and if pressure decreases with ampli-
tude, the mode is unstable. Furthermore, since the vacuum
energy is taken to be zero, then the pressure is zero for zero
amplitude. Hence, for small amplitudes, this can be
expressed even more simply: positive pressure implies
stability and negative pressure implies instability.

4. Application to dimension-four potentials

Let us apply this formalism to the dimension-four
potentials of Sec. III. For now we consider m2 > 0, the
vacuum energy V0 ¼ 0, and allow λ to be either positive or
negative. The potential is then given by Eq. (44). The sign
of λ should determine stability as it determines the sign of
the pressure.
We are able to express the above integrals for hp0i in

Eq. (69) in terms of elliptic integrals. After doing so, we
find the following result for the sound speed as a function
of amplitude:

c2S ¼
ð2m2 þ λϕ2

aÞ½m2EðζaÞ − ðm2 þ λϕ2
aÞKðζaÞ�2

3λϕ2
aðm2 þ λϕ2

aÞ2KðζaÞ2
ð73Þ

where

ζa ≡ −
λϕ2

a

2m2 þ λϕ2
a

ð74Þ

and K and E are the complete elliptic integrals of the first
and second kind, respectively. Note all the various squared
factors in Eq. (73). This means that the sign of c2S is
determined by the sign of λ. So we see explicitly that the
sign of λ determines the sign of the pressure. For λ > 0 and
ϕa ≫ m=

ffiffiffi
λ

p
this expression collapses to c2S ¼ 1=3; we

shall return to this below.
For general amplitudes, we plot c2S in the upper panel of

Fig. 4. We see that the sound speed (and hence the Floquet
exponent) begins at zero for zero amplitude. This makes
sense, because for small field amplitudes, the theory is
approximately matter dominated, which has zero pressure.
On the other hand, c2S moves away from zero at finite
amplitude. For λ < 0 there is a corresponding instability
due to the negative pressure, which becomes arbitrarily
large near the hilltop ϕa → ϕa;max. In general we expect
there to be higher-order corrections to the potential to
provide a sensible model for inflation; this will weaken the
strength of this instability.
By recalling μk ¼ �icSk, this result for c2S adequately

explains the presence of the thick instability band we saw
earlier in Fig. 1 for δϕ∥ and λ < 0.

5. Application to power-law potentials

Let us now consider the case of a pure power-law
potential

Vð~ϕÞ ¼ λ̂

2q
j~ϕj2q ð75Þ

with λ̂ > 0. For this to involve ordinary operators around
ϕ ¼ 0, we expect q to be an integer. However, we can also
imagine that this power law is only the behavior of the
potential at large field values, so we might allow q to be any
positive number. Indeed the coupling λ̂may not be the same
as the leading interaction coupling λ from expanding
around small field values. In any case, the integrals (70)
and (71) can be done analytically and the result yields

c2S ¼
q − 1

qþ 1
: ð76Þ

A plot of c2S for the power-law potential is given in the
upper panel of Fig. 5. For q ≥ 1, c2S ≥ 0, and we have
stability. For example, for the quartic theory q ¼ 2,
c2S ¼ 1=3, as is appropriate for a radiation era. On the
other hand, for 0 < q < 1 we have an instability. This
would be relevant to some models of inflation, such as
“axion monodromy models” [42,43] where possible values
of the power include q ¼ 1=2; 1=3.
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Now assuming 0 < q < 1, we have a nonzero and real
Floquet exponent μk whose value is independent of
amplitude in this small-k approximation (since c2S is a
constant). But we need to know the ratio of μk to the Hubble
parameter H. For the power-law potential (75), we have

H ∼
ffiffiffî
λ

p
ϕq
a=MPl, giving μk=H ∼MPlk=ð

ffiffiffî
λ

p
ϕq
a). This ratio

becomes arbitrarily large at small field amplitudes.
However, at some point a realistic potential should tran-
sition from this fractional power law to say a regular
quadratic potential at small field values. Let us call the
transition scale ϕa ∼ Λ, which acts as a cutoff on the field
theory. A toy example of this behavior is [36]

VðϕÞ ¼ m2Λ2

2q

��j~ϕj2
Λ2

þ 1

�q

− 1

�
: ð77Þ

This implies that λ̂ will be related to the transition scale Λ
and massm by λ̂ ∼m2=Λ2ðq−1Þ. At the transition regime, we
obtain μk=H ∼ kMPl=ðmΛÞ. Now the dominant instability
occurs when k is “small,” but parametrically of the same
order as m; see Fig. 1. So then we have μk=H ∼MPl=Λ.
Hence a large instability is associated with the transition
scale satisfying MPl=Λ ≫ 1. In fact, by Taylor expanding
around small ϕ, we can relate Λ to the quartic coupling λ

by Λ ∼m=
ffiffiffiffiffijλjp
. So to use the notation of Sec. III, this

corresponds to the statement that r≡ ffiffiffiffiffijλjp
MPl=m ≫ 1 for

large instability.

C. Isocurvature modes δn

In the previous section we studied the energy density—
the density associated with the conserved energy. In this
section we study the various number densities—the den-
sities associated with conserved particle numbers.
The OðN Þ internal symmetry ϕi → Ri

jϕ
j leads, by

Noether’s theorem, to the following set of number
densities:

nij ¼ _ϕiϕj − _ϕjϕi: ð78Þ

The integral over space ΔNij ¼
R
d3xnij is a set of

N ðN − 1Þ=2 conserved particle numbers. For a complex
field (N ¼ 2) ΔN is the number of particles minus the
number of antiparticles; this will be examined further in
Part 2 [38] with regards to its possible relation to
baryogenesis.
Now let us expand around the background ~ϕ0 given by

Eq. (7). To leading nonzero order, we have the following set
of N − 1 linear quantities:

δni ¼ −
�
ϕ0

∂
∂t − _ϕ0

�
δϕ⊥i ð79Þ

FIG. 4 (color online). The squared speeds as a function of amplitude ϕa in units ofm=
ffiffiffiffiffijλjp

for the dimension-four theory withm2 > 0.
In the left panel λ > 0 and in the right panel λ < 0. In the upper panel the sound speed c2S governs the stability of the adiabatic mode δε
(δϕ∥). In the lower panel the speed c2I governs the stability of isocurvature modes δni (δϕ⊥i).
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with i ¼ 1;…;N − 1. Also, to leading nonzero order, we
have the following set of ðN − 1ÞðN − 2Þ=2 quadratic
quantities:

δnij ¼ δ _ϕ⊥iδϕ⊥j − δ _ϕ⊥jδϕ⊥i ð80Þ

with i; j ¼ 1;…;N − 1. This latter set of conserved
quantities will not appear in the leading-order analysis
of the low-lying modes. Instead the modes of interest are
the N − 1 densities ni. We see that these densities ni are
given by some linear operator acting on the orthogonal
perturbations δϕ⊥i and are independent of the parallel
perturbations δϕ∥ at this order. Hence perturbations in δϕ⊥
cause perturbations in the relative number densities of
species without affecting the total energy density. So these
are, by definition, isocurvature modes.

1. Equation of motion

As we did before for δρ, we would like to construct a
second-order equation of motion for the number density
perturbations δni. A first time derivative gives

_δni ¼ ϕ̈0δϕ⊥i − ϕ0δϕ̈⊥i: ð81Þ

Then using the equation of motion for ϕ0 and the equation
of motion for δϕ⊥i, this can be simplified to

_δni ¼ k2ϕ0δϕ⊥i: ð82Þ

We now take another time derivative and use Eq. (79) to
eliminate δ _ϕ⊥i. This gives the second-order equation

δ̈ni þ k2ðδni − 2 _ϕ0δϕ⊥iÞ ¼ 0: ð83Þ

This result is analogous to Eq. (56) that we obtained for
the energy density perturbation δε. If we use Eq. (81) to
eliminate δϕ⊥i in favor of δni we obtain the second-order
equation for δni that we mentioned earlier in Eq. (34). But
we would like to perform a time averaging of this present
equation analogously to our time averaging of δε.

2. Time average with auxiliary potential

As earlier, in order to make progress, we consider long
wavelengths. If we went to infinite wavelengths, then δni
would be constant since number densities are conserved by
Noether’s theorem. So for sufficiently long wavelengths,
the number density should be slowly varying in time
compared to δϕ⊥i; the number density is plotted in
Fig. 6 where we see its relatively slow variation in the
lower right panel, compared to the rapid oscillation in the
orthogonal field fluctuations in the lower left panel. It is
true that (for the parameters chosen) δni is growing
exponentially, but the growth rate is small compared to
the period of δϕ⊥i in this long-wavelength regime. So if
we time average over the period of background oscillation
we have

hδnii ≈ δni: ð84Þ

We are then led to the time-averaged equation

δ̈ni þ k2ðδni − 2h _ϕ0δϕ⊥iiÞ ¼ 0 ð85Þ

where we must deal with rapidly oscillating factors _ϕ0 and
δϕ⊥i; this rapid oscillation is seen in the lower left panel
of Fig. 6.
In this form it appears difficult to reorganize this into a

useful form. So this is where we make use of the
correspondence between δni and δε. The idea is to re-
express this in terms of the auxiliary field ~ϕ0 variable
we introduced in Sec. IVA, and then treat the isocurva
ture fluctuation with respect to the potential V as
analogous to an adiabatic perturbation with respect to
the auxiliary potential ~V. Now let us recall the relation-

ship _~ϕ0 ¼ ϕ0=~t, which implies

_ϕ0 ¼ ~t ̈~ϕ0 ¼ −~t ~V 0ð ~ϕ0Þ: ð86Þ

FIG. 5 (color online). The squared speeds as a function of the
power q for a pure power-law potential. In the upper panel the
sound speed c2S governs the stability of the adiabatic mode δε
(δϕ∥). In the lower panel the speed c2I governs the stability of
isocurvature modes δni (δϕ⊥i).
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Substituting this into Eq. (85) then gives

δ̈ni þ k2ðδni þ 2~th ~V 0ð ~ϕ0Þδϕ⊥iiÞ ¼ 0: ð87Þ

This now has a similar structure to Eq. (58) for the
time-averaged δε. So we can again make use of a
type of chain rule to express the final time-averaged
quantity in terms of the auxiliary background quantities,
namely

−~th ~V 0ð ~ϕ0Þδϕ⊥ii ¼
dh ~Vi
dh~ε0i

δni: ð88Þ

Note the negative sign here is because of the relative
overall sign between the expression for the linearized
densities in Eqs. (52) and (79). Upon substitution we
have

δ̈ni þ k2
�
1 − 2

dh ~Vi
dh~ε0i

�
δni ¼ 0: ð89Þ

Hence we are led to a direct correspondence between
the wave equation for δε of Eq. (60) and a wave
equation for δni.

3. Isocurvature speed cI
From this wave equation, we can identify a speed

from the auxiliary pressure ~p0 and energy density ~ε0.
This analysis proceeds as in Sec. V B 3, so we do not
repeat all the details here. It suffices to say that there is a
type of isocurvature speed given by

c2I ≡ dh ~p0i
dh~ε0i

ð90Þ

with the wave equation given by

δ̈ni þ c2I k
2δni ¼ 0: ð91Þ

So the stability of the isocurvature modes at long wave-
lengths is determined by the sign of c2I , with the corre-
sponding Floquet exponent given by

μk ¼ �icIk: ð92Þ

Now there is an important technical difference between
the way we need to compute the derivative of the auxiliary
pressure in Eq. (90) compared to how we computed the
derivative of pressure in Eq. (65). For the adiabatic mode,
we previously made use of the chain rule to rewrite the

FIG. 6 (color online). Representative plot of the time evolution of the fluctuations in the dimension-four potentials, with m2 > 0 and
λ > 0. The fields (rapidly oscillating) are in the left panel and the densities (slowly varying) are in the right panel. The upper panel is for
the adiabatic mode: δϕ∥ and δε. The lower panel is for the isocurvature mode: δϕ⊥ and δn. We have plotted each fluctuation in units of
its initial starting value and time in units of inverse mass. For definiteness, we chose a background amplitude of ϕa ¼ 0.4m=

ffiffiffi
λ

p
and

wave number k ¼ 0.2m; this is in the regime of stability for the adiabatic mode and instability for the isocurvature mode (see left panel of
Fig. 1). For λ < 0 (not shown here) the stability structure is interchanged.
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derivatives with respect to the pump amplitude ϕa of
interest in Eq. (72). However, for the isocurvature modes,
we need to be careful since the auxiliary potential ~V, and
hence the auxiliary pressure ~p0 and energy density ~ε0,
depend on both the field ~ϕ and the amplitude itself, even
before time averaging. In order to define a physical
derivative we need to fix the theory as we vary the
amplitude. To make the dependence on amplitude explicit,
let us write the auxiliary potential as

~V ¼ ~Vð ~ϕ;ϕ�
aÞ ð93Þ

where the amplitude ϕ�
a is to be treated as a fixed parameter

of the potential when we take the derivatives. The corre-
sponding isocurvature speed is then given by

c2I ¼
∂h ~p0i
∂ϕa

·

�∂h~ε0i
∂ϕa

�
−1





ϕ�
a→ϕa

: ð94Þ

We have replaced straight derivatives by partial derivatives,
since the time-averaged quantities depend on both ϕa and
ϕ�
a. After taking the derivative with ϕ�

a fixed, we then take
the limit ϕ�

a → ϕa to obtain the correct amplitude.
With this understanding of derivatives, we arrive at a

similar conclusion to the adiabatic mode: if the auxiliary
pressure increases with amplitude, the isocurvature modes
are stable, and if the auxiliary pressure decreases with
amplitude, the isocurvature modes are unstable.

4. Application to dimension-four potentials

We now illustrate this with the dimension-four potential
we examined earlier [Eq. (44)]. The auxiliary potential
governing the isocurvature modes can be expressed as

~Vð ~ϕ;ϕ�
aÞ ¼

m2 þ λϕ�2
a

2λ~t2
ð1 − cosð

ffiffiffiffiffi
2λ

p
~t ~ϕÞÞ: ð95Þ

Earlier we plotted this potential in Fig. 3. For λ > 0 this
potential, as a function of ~ϕ, rises more slowly than a
quadratic potential; this gives rise to negative pressure. For
λ < 0 it rises more quickly (it can be expressed as a cosh
function); this gives rise to positive pressure. So the sign of
λ determines stability, but, interestingly, in a fashion
opposite to that of the adiabatic mode.
We numerically carry out the integrals of this potential to

determine the time-averaged auxiliary pressure h ~p0i at
some amplitude ϕa with ϕ�

a held fixed. We then compute
the derivatives according to Eq. (94) and then take the limit
ϕ�
a → ϕa. In fact since ϕ�

a only appears in the overall
prefactor in Eq. (95), then its value cancels out of the ratio
that gives c2I . The resulting squared speed c2I is plotted in
the lower panel of Fig. 4. In the figure we see that for λ > 0
the squared speed c2I < 0 which implies instability, while if
λ < 0 the squared speed c2I > 0 which implies stability. We

see that this behavior is complementary to that of the
adiabatic mode.
Indeed by recalling μk ¼ �icIk, this result for c2I

adequately explains the presence of the thick instability
band we saw earlier in Fig. 1 for δϕ⊥ and λ > 0.

5. Application to power-law potentials

For pure power-law potentials of the form given earlier in
Eq. (75), we can determine the isocurvature speed c2I . We
do not have closed analytical forms for the auxiliary
potential ~V for an arbitrary power q. However, some
special cases are worth mentioning. For q ¼ 2 we find
that ~V is a cosine (as discussed earlier with an additional
mass term), for q ¼ 1 we just recover the quadratic
potential, and for q ¼ 1=2 we find that ~V is a rational
function of ~ϕ. For noninteger q, we of course need other
operators to come into play around ϕ ¼ 0; we refer the
reader back to the discussion surrounding Eq. (77) for
this issue.
Carrying out the procedure numerically, leads to the value

of c2I as a function of q plotted in the lower panel of Fig. 5.
We see that for q > 1 there is instability, while for q ≤ 1
there is stability. This is precisely opposite that of the
adiabatic mode, whose result is plotted in the upper panel.
So this proves that for an entire family of potential functions,
the stability/instability of the adiabatic/isocurvature modes
at long wavelengths are complementary. The two behaviors
only agree at the trivial point q ¼ 1, which is just a free
theory.

VI. CIRCULAR MOTION FOR BACKGROUND

In the previous sections we studied background fields
that evolved radially in field space. These radial trajectories
are an attractor solution for inflation and so are strongly
motivated. However, there is another class of background
solutions that is worthy of study. This is when the back-
ground evolves circularly in field space. For a generic
potential, this is the one other form of trajectory that will be
periodic.
Circular motion also has some physical motivation. In

the previous section, we showed that under certain con-
ditions, namely when the pressure associated with the
auxiliary potential is negative, there are unstable isocurva-
ture modes around the background radial motion. This
means that the field tends to evolve locally in an angular
fashion in field space. For a complex field (two field) this
means either clockwise or anticlockwise motion at least
locally. When such motion is established, it is important to
analyze its stability. For now we treat this clockwise or
anticlockwise field as homogeneous and perturb around it,
even though generally it would have some spatial structure.
This is relevant to the production and stability of so-called
Q-balls [44].
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A. Background evolution

For definiteness let us focus on two fields and organize
them into a complex scalar ϕ ¼ ðϕ1 þ iϕ2Þ=

ffiffiffi
2

p
. Now in

order to describe a potential that only depends on the
magnitude jϕj it is convenient to introduce the magnitude
as ρ ¼ ffiffiffi

2
p jϕj. Using the chain rule, the equation of motion

for the background is

ϕ̈0 þ
V 0ðρ0Þ
ρ0

ϕ0 ¼ 0: ð96Þ

For circular motion, we have ρ0ðtÞ ¼ ϕa, which is a
constant amplitude. Then the equation of motion becomes
the equation of a simple harmonic oscillator (we assume
V 0ðϕaÞ > 0) with the solution

ϕ0ðtÞ ¼
ϕaffiffiffi
2

p e−iω0t ð97Þ

(the factor of 1=
ffiffiffi
2

p
is convenient when switching to

complex notation). Here the frequency of the circular orbit
is the constant

ω2
0 ¼

V 0ðϕaÞ
ϕa

: ð98Þ

This is an exact closed-form solution for any potential.

B. Full Floquet result

We expand the field around the background as ϕ ¼
ϕ0 þ δϕ and work to linear order as usual. The linearized
equation of motion for the perturbations is

δ̈ϕþ k2δϕþ ∂2V
∂ϕ0∂ϕ�

0

δϕþ ∂2V
∂ϕ�2

0

δϕ� ¼ 0: ð99Þ

Evaluating the coefficients on the background solution
gives

∂2V
∂ϕ0∂ϕ�

0

¼ 1

2

�
V 00ðϕaÞ þ

V 0ðϕaÞ
ϕa

�
; ð100Þ

∂2V
∂ϕ�2

0

¼ e−2iω0t

2

�
V 00ðϕaÞ −

V 0ðϕaÞ
ϕa

�
: ð101Þ

We see that while the first coefficient is constant in time, the
second coefficient carries a periodic time dependence.
The periodicity of the coefficient (101) implies that

Eq. (99) is a type of Hill’s equation. However, the time
dependence in this case carries a very special structure.
Since it is an exponential, we can completely remove all
time dependence in the equation of motion for the pertur-
bations by introducing the new field

δψ ¼ eiω0tδϕ: ð102Þ

The equation of motion for δψ is found to be

δ̈ψ − 2iωo
_δψ þ k2δψ þ

�
V 00ðϕaÞ−

V 0ðϕaÞ
ϕa

�
δψ þ δψ�

2
¼ 0:

ð103Þ

We see that all coefficients are now time independent, so
this can be readily solved.
This can be rewritten as a collection of four first-order

differential equations. To do so, let us decompose δψ into
real and imaginary parts δψ ¼ ðδψ1 þ iδψ2Þ=

ffiffiffi
2

p
and let us

introduce the momentum conjugate as δπ1 ¼ _δψ1 and
δπ2 ¼ _δψ2. The system of equations can then be written
as the following matrix equation for δψ1 and δψ2:

d
dt

0
BBB@

δψ1

δψ2

δπ1

δπ2

1
CCCA ¼

0
BBB@

0 0 1 0

0 0 0 1

β 0 0 −2ω0

0 −k2 2ω0 0

1
CCCA
0
BBB@

δψ1

δψ2

δπ1

δπ2

1
CCCA

ð104Þ

where

β≡ −k2 − V 00ðϕaÞ þ
V 0ðϕaÞ
ϕa

: ð105Þ

The eigenvalues of this matrix are the Floquet exponents
μk. The two pairs of eigenvalues are found to be

μk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−WðϕaÞ − k2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðϕaÞ2 þ 4

V 0ðϕaÞ
ϕa

k2
rs

ð106Þ

where

WðϕaÞ≡ 1

2

�
V 00ðϕaÞ þ 3

V 0ðϕaÞ
ϕa

�
: ð107Þ

So this provides an exact analytical result for the Floquet
exponent for any potential.
We evaluate this for the dimension-four potentials as

examined earlier. A plot of the result for the Floquet
exponent is given in Fig. 7. We have taken the upper
“þ” sign in μk, as we find this is the only exponent that
can carry an instability. In the left panel m2 > 0 and λ < 0.
In the right panel m2 < 0 and λ > 0. We also note that if
m2 > 0 and λ > 0 there is no instability. We have plotted μk
in units of the mass jmj, rather than the Hubble parameter
H. The reason for this choice is that a circular trajectory for
ϕ0 will only occur locally, so there is less motivation to
compare μk to H.
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We see that there is at most only the first instability band.
This makes sense from the point of view of the quantum
theory in Part 2 [38], where we show that higher bands are
associated with annihilations 2ϕþ 2ϕ̄ → ϕþ ϕ̄. Since the
background here is circular, it can be thought of as a
collection of only particles (or only antiparticles) rather
than a mixture. Hence the conservation of particle number
prevents annihilations from occurring. This means an
instability can only arise from particle scattering, which
requires a single instability band starting at small k.

C. Long-wavelength limit and sound speed cS
We also note a peculiar feature of the instability band in

Fig. 7. For m2 > 0 we see that at high amplitudes the
Floquet exponent is nonzero even in the k → 0 limit. For
m2 < 0 we see this behavior at low amplitudes. Let us now
perform the long-wavelength stability analysis to determine
where this occurs and its physical explanation.
First, let us discuss the energy density perturbation

and the number density perturbation in this context. For
a complex field, it is straightforward to show that these
density perturbations are given by

δn ¼
ffiffiffi
2

p
ϕa

�
ω0ðδψ þ δψ�Þ þ i

2
ð _δψ − δ _ψ�Þ

�
; ð108Þ

δε ¼ ω0δn: ð109Þ

So we find that these perturbations are, at linear order,
proportional to one another. Earlier in this paper, when we
studied perturbations around a radial inflaton background,
we found that these two kinds of perturbations were
linearly independent, and that their stability charts were
complementary. But when we expand around a circular
background we find this new behavior. We can understand
this as follows. We again recall that since the background is
circular, it can be viewed as purely a collection of particles
(or purely antiparticles) rather than a mixture. So in some

sense, we only have a single type of species available,
which prevents a standard type of isocurvature behavior.
This means that δn by itself no longer describes an
isocurvature perturbation. Instead δn ≠ 0 is now associated
with an adiabatic mode. There can of course still be a kind
of isocurvature mode, defined by δε ¼ 0 (so δn ¼ 0 too),
but these are nonresonant.
This means that there is really only one important speed

that governs the behavior at long wavelengths (since the
perturbations δε and δn have the same form). This is the
sound speed c2S of the adiabatic mode associated with
pressure, as we showed earlier in Sec. V. For circular
motion, the energy density and pressure of the background
are given by

ε0 ¼
1

2
ϕ2
aω

2
0 þ VðϕaÞ; ð110Þ

p0 ¼
1

2
ϕ2
aω

2
0 − VðϕaÞ: ð111Þ

These are time independent, so there is no need to perform
the time averaging of the earlier sections. By recalling that
the squared sound speed c2S is given by taking derivatives
according to Eq. (72), and by eliminating ω2

0 using Eq. (98),
we obtain the following analytical result for the sound
speed:

c2S ¼
ϕaV 00ðϕaÞ − V 0ðϕaÞ
ϕaV 00ðϕaÞ þ 3V 0ðϕaÞ

: ð112Þ

For example, if we apply this result to the dimension-four
potentials, we obtain

c2S ¼
λϕ2

a

2m2 þ 3λϕ2
a
: ð113Þ

This result can also be obtained directly from the Floquet
exponent in Eq. (106) by taking the small-k limit then using

FIG. 7 (color online). Contour plot of the real part of the Floquet exponent μk for a circular background for dimension-four potentials
as a function of wave number k and background amplitude ϕa. In the left panel m2 > 0 and λ < 0. In the right panel m2 < 0 and λ > 0.
We have plotted μk in units of jmj, k in units of jmj, and ϕa in units of jmj= ffiffiffiffiffijλjp

.
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μk ¼ �icsk. However this only works if WðϕaÞ > 0.
If WðϕaÞ < 0 then μk does not vanish when k → 0,
even for the upper “þ” sign in Eq. (106). Instead the
Floquet exponent approaches a k-independent value μk →ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jWðϕaÞj

p
in this limit. So in the WðϕaÞ < 0 regime, the

field exhibits a catastrophic instability, since even pertur-
bations that are themselves homogeneous cause a large
instability.
To explain this feature of instability even for homo-

geneous perturbations, let us analyze the condition
WðϕaÞ < 0 more closely. Suppose we were studying a
pure power law VðϕÞ ¼ λ

2qϕ
2q. The catastrophic instability

condition WðϕaÞ < 0 implies

q < −1: ð114Þ

Now this is not normally a regime of much interest in field
theory, though it may be relevant at large field values in
special effective field theories. However, as we are cur-
rently probing homogeneous perturbations, the problem has
essentially been reduced to a central force problem of a
point particle, with distance from the origin given by
RðtÞ ∝ jϕðtÞj. So this condition says that central potentials
with inverse power laws steeper than V ∼ −1=R2 are highly
unstable. Indeed if one perturbs around a circular orbit, one
either finds a particle trajectory that spirals out to infinity or
spirals in to the origin. On the other hand, for potentials that
are less steep than V ∼ −1=R2 (such as the classic −1=R
potential of Newtonian gravity) perturbations do not spiral
away. The physical reason −1=R2 is special is because it is
competing with the energy coming from angular momen-
tum, which itself scales as þ1=R2. Hence in order to have
stability of the “effective potential” one needs q > −1. If
we consider more general potentials than just power laws,
the generalized criteria for the stability of particle orbits
is WðϕaÞ > 0.
For dimension-four potentials, the critical value

WðϕcritÞ ¼ 0 occurs for

ϕcrit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2m2

3λ

r
: ð115Þ

This is precisely the critical value seen in Fig. 7. In the left
panel, with m2 > 0 and λ < 0, the catastrophe occurs for
ϕa > ϕcrit, while in the right panel, withm2 < 0 and λ > 0,
the catastrophe occurs for ϕa < ϕcrit. In the latter case, the
background field must orbit the “inner” part of the Mexican
hat potential ϕa < ϕvev. Note that earlier in Fig. 2 we only
plotted ϕa on the “outer” part of the Mexican hat potential
ϕa > ϕvev, as the radial oscillations meant that it was
redundant to include the inner part separately. However for
circular orbits, these two regions are physically different.
In the case of most physical interest for us, m2 > 0. In

this case the instability in the circular background, that

occurs when λ < 0, suggests a type of collapse instability.
This can lead to the formation of so-called Q-balls [44].
These are aptly named since the global U(1) symmetry
ensures a conserved particle number (or charge Q) asso-
ciated with these field lumps. We note that efficiently
producing Q-balls after inflation is slightly complicated.
First, inflation establishes radial motion for the back-
ground. In order to obtain significant production of particle
regions and separate antiparticle regions, we would like
the isocurvature instability to be active, as discussed
earlier. This requires λ > 0. Then we would like to examine
the fate of these regions. However, they will not lead to
Q-balls, as this requires λ < 0 for the collapse instability to
occur. Instead one can imagine Q-balls forming from
λ < 0, even though the initial breakup of the inflaton will
be towards overdensities comprising both particles and
antiparticles, i.e, adiabatic perturbations. This means that in
simple models with λ < 0, Q-balls can form, but not as
efficiently as one might have naively thought otherwise. In
more complicated potentials, one could imagine making the
isocurvature instability active right after inflation ends,
breaking up the field into particle regions and separate
antiparticle regions. Then for smaller field amplitudes, the
adiabatic instability would be active in each of these
regions, leading to the formation of Q-balls. This would
presumably be highly efficient, although perhaps fine-
tuned. We also note that for both single or multifield
models, related structures can form, known as oscillons
[34–36,45], which, unlike Q-balls, can annihilate
away [37].

VII. CONCLUSIONS

In this paper we have presented Part 1 of a theory of
self-resonance after inflation. For multiple fields with an
internal symmetry, we have shown that the post-
inflationary modes decompose into adiabatic and isocur-
vature modes, with long-wavelength modes exhibiting a
gapless spectrum as required by the Goldstone theorem.
We proved general results on the stability/instability of

long-wavelength modes. We constructed a sound speed
from time averaging the background oscillations leading to
a time-averaged pressure. This time averaging is a form of
coarse graining and is required to build the effective theory
governed by the Goldstone modes. For positive couplings
λ > 0 the pressure for the adiabatic mode is positive and
there is stability, while for negative couplings λ < 0 the
pressure for the adiabatic mode is negative and there is
instability. For the isocurvature modes, we developed for
the first time an “auxiliary” potential whose time-averaged
pressure governs its behavior. We found that the stability
structure was essentially the opposite of that of the
adiabatic modes. So for the classic λ > 0 type of inflation
modes with multiple fields, there is large resonance in the
isocurvature modes, while there is very little resonance in
the single (adiabatic) mode for single-field models.
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We mainly studied radial motion of the background
inflaton field, but also considered circular motion which
may arise locally in some regions after inflation. In this
other limit, we were able to compute the evolution and
Floquet exponents analytically in closed form. This is
relevant to the possible production and stability of Q-balls.
We identified a regime of catastrophe, where we saw
instability even in the k → 0 limit, and we explained this
as being related to well-known results of central forces.
One of the central consequences is that there is neces-

sarily an enhancement of power due to these various
instabilities, even in regimes where it was usually unex-
pected; namely for λ > 0. These scales do approach the
horizon at early times. It would be of interest to consider
any possible observational consequences of this. Ordinarily
these scales are far too small for direct detection, but they
may play a role in the generation of gravitational waves
[46,47] or some other astrophysical phenomena.
Altogether we presented an important step towards a

complete theory of self-resonance after inflation in single
and multifield models. For long wavelengths the behavior
is determined by the physical variables pressure and
auxiliary pressure. The Goldstone theorem organizes the
adiabatic and isocurvature modes, proving that the spec-
trum is gapless. We believe this is the first time that the
Goldstone theorem has been used in the context of self-
resonance after inflation.
It is also of great interest to have a detailed understanding

of self-resonance from the underlying description of the
quantum mechanics of many particles. We do this in Part 2
[38]. This includes understanding the long-wavelength
phenomena using nonrelativistic quantum mechanics, the
shorter-wavelength phenomena using Feynman diagrams,
and the explicit quantization around the classical back-
ground. Furthermore, we explore a small breaking of the
symmetry, which is essential to some models of baryo-
genesis [39,40].
A direction for future work is to remove the internal

symmetry of the Lagrangian. It would be interesting to
see how this alters the structure of the various modes, and
whether some analogous (“auxiliary”) pressure arguments
could be developed. Another possibility is to go beyond
linear theory and apply these arguments to develop a theory
of nonlinear fluid dynamics.
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APPENDIX: NONCANONICAL KINETIC TERMS

Here we consider a more general form of the action for
scalar fields. First, we focus on a single scalar field, but
allow for higher-derivative interactions. Second, we focus
on just the standard two-derivative action, but allow for
multiple fields with a nontrivial metric on field space.
First let us consider a single scalar field. Earlier we had

truncated the action to just two derivatives. Here we allow
for higher derivatives in the scalar sector of the theory. The
most general form for the action can be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ KðX;ϕÞ þ � � �

�
ðA1Þ

where X ≡ − 1
2
ð∂ϕÞ2. This defines a so-called K-essence

model (the canonical case corresponds to K ¼ X − VðϕÞ).
An example of this is Dirac-Born-Infeld inflation [48].
Interesting work on preheating in these noncanonical
models includes Refs. [49–52]. In Eq. (A1) the dots
indicate higher-order gravity corrections, such as
R2;Rð∂ϕÞ2, etc. We will ignore those corrections in this
analysis.
As we showed in Sec. V, the existence of an instability at

long wavelengths is determined by a sound speed asso-
ciated with time averaging the background pressure. The
background pressure and density are given from the stress
tensor of the scalar field. We find

p0 ¼ KðX0;ϕ0Þ; ðA2Þ

ε0 ¼ 2
∂KðX0;ϕ0Þ

∂X0

X0 − KðX0;ϕ0Þ ðA3Þ

with X0 ¼ 1
2
_ϕ2
0. Then by time averaging over a cycle of

oscillation, we obtain the sound speed c2S as the derivative
of pressure hp0i with respect to energy density hε0i. This
determines the Floquet exponent for small k, as we
described in Sec. V, generalized to an arbitrary K-essence
model.
If we have multiple fields, this is still the basic meth-

odology to construct the sound speed of the adiabatic mode.
Furthermore, there may be a generalization of this result to
an auxiliary pressure and energy density for the isocurva-
ture modes, but it appears cumbersome. In the following
discussion we study multiple fields, but only for the two-
derivative action.
The most general two-derivative action for multiple

fields involves a kinetic energy with some metric on field

space Gijð~ϕÞ. If we impose the internal rotational sym-
metry, this can be organized into the following form:

Gijð~ϕÞ ¼ g1ðj~ϕjÞδij þ g2ðj~ϕjÞϕiϕj ðA4Þ
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where g1;2 are functions of the magnitude of ~ϕ. In general
this defines a type of so-called “nonlinear sigma model.”
To be definite, let us consider the case of two fields,

which we express in polar coordinates ρ; θ. In this case, the
most general form of the action, with the internal rotational
symmetry, is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
ð∂ρÞ2 − κ2ðρÞ

2
ð∂θÞ2 − VðρÞ

�
ðA5Þ

where we have exploited the coordinate freedom on field
space to express the metric in terms of a single function
κðρÞ [the canonical case corresponds to κðρÞ ¼ ρ].
For radial motion in field space, the background equation

of motion for ρ0ðtÞ is standard. Furthermore, the equation
of motion for δρ is also the standard equation for the
adiabatic modes, previously expressed as δϕ∥. This can be
expressed as an equation for the energy density perturba-
tion δε, as given earlier in Eq. (33).

For the orthogonal fluctuations (isocurvature), described
here by δθ, we find the following equation of motion:

δ̈θ þ 2
_κ0
κ0

_δθ þ k2δθ ¼ 0: ðA6Þ

Now recall from Sec. IV, where we studied canonical
kinetic energy, that in order to pass from the adiabatic
fluctuation to the isocurvature fluctuation, we needed to

introduce a new field ~ϕ0, satisfying
_~ϕ0 ¼ ϕ0=~t. This can be

seen from comparing the coefficients of the first derivative
terms in Eqs. (33) and (34). Here in Eq. (A6), we see
that for the noncanonical kinetic energy, the appropriate
generalization is

_~ϕ0 ¼
κðϕ0Þ
~t

: ðA7Þ

Then by following the methods of Sec. IV, one can obtain
the generalization of the auxiliary potential ~V to the case of
noncanonical kinetic energy.
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