23 research outputs found
A Real-time Image Reconstruction System for Particle Treatment Planning Using Proton Computed Tomography (pCT)
Proton computed tomography (pCT) is a novel medical imaging modality for
mapping the distribution of proton relative stopping power (RSP) in medical
objects of interest. Compared to conventional X-ray computed tomography, where
range uncertainty margins are around 3.5%, pCT has the potential to provide
more accurate measurements to within 1%. This improved efficiency will be
beneficial to proton-therapy planning and pre-treatment verification. A
prototype pCT imaging device has recently been developed capable of rapidly
acquiring low-dose proton radiographs of head-sized objects. We have also
developed an advanced, fast image reconstruction software based on distributed
computing that utilizes parallel processors and graphical processing units. The
combination of fast data acquisition and fast image reconstruction will enable
the availability of RSP images within minutes for use in clinical settings. The
performance of our image reconstruction software has been evaluated using data
collected by the prototype pCT scanner from several phantoms.Comment: Paper presented at Conference on the Application of Accelerators in
Research and Industry, CAARI 2016, 30 October to 4 November 2016, Ft. Worth,
TX, US
Proton Therapy for Breast Cancer:A Consensus Statement From the Particle Therapy Cooperative Group Breast Cancer Subcommittee
Radiation therapy plays an important role in the multidisciplinary management of breast cancer. Recent years have seen improvements in breast cancer survival and a greater appreciation of potential long-term morbidity associated with the dose and volume of irradiated organs. Proton therapy reduces the dose to nontarget structures while optimizing target coverage. However, there remain additional financial costs associated with proton therapy, despite reductions over time, and studies have yet to demonstrate that protons improve upon the treatment outcomes achieved with photon radiation therapy. There remains considerable heterogeneity in proton patient selection and techniques, and the rapid technological advances in the field have the potential to affect evidence evaluation, given the long latency period for breast cancer radiation therapy recurrence and late effects. In this consensus statement, we assess the data available to the radiation oncology community of proton therapy for breast cancer, provide expert consensus recommendations on indications and technique, and highlight ongoing trials' cost-effectiveness analyses and key areas for future research. (c) 2021 Elsevier Inc. All rights reserved
Understanding image artifacts for a prototype proton computed tomography scanner via Monte Carlo simulations
International audienc