91 research outputs found

    How to test cultural theory: Suggestions for future research

    Get PDF
    This symposium highlighted the relevance of the cultural theory (CT) pioneered by anthropologists Mary Douglas, Steve Rayner, and Michael Thompson and political scientists Aaron Wildavsky and Richard Ellis for explaining political phenomena. In this concluding article, we suggest ways in which CT can be further tested and developed. First, we describe how the theory has been applied thus far and some of the achievements of these applications. Then, we examine some of the challenges revealed by this research. Finally, we discuss ways of applying CT that promise to help meet these challenges. These methods include nesting case studies and combining case study and survey research, simulations, experiments, and approaches from social neuroscience.</jats:p

    Excavation damage zone fracture modelling for seismic tomography : a comparison of explicit fractures and effective medium approaches

    Get PDF
    We model the full wavefield produced by a seismic velocity survey and optimise the representation of the fracture zone to best match field waveforms. The velocity survey was part of a mapping study on fractures in the Excavation Damage Zone (EDZ) of ONKALO underground research facility at Olkiluoto. The EDZ results from excavation of the rock mass, which modifies stress conditions changing the nature and behaviour of pre-existing fractures and generating new fracturing. These fractures act as the main transport pathways for contaminants both in and out of a geological disposal facility (GDF). Our goal is to test different representations of the fracture zone and to determine which models most successfully improve the interpretation of the fracture zone, producing estimates of a key unknown parameter, fracture stiffness, in addition to fracture sizes, fracture geometry, fracture density and crack density. We use modelling techniques previously tested in theoretical and laboratory studies and assess their performance on a real engineering problem. The paper introduces the field experiment and relevant information from the GDF in Finland. It describes the methodologies used for representing the fracture networks in the models — Explicit Fracture models with two approximations called Pixelised Fracture Model (PFM) and Equivalent Discrete Fracture Medium (EDFM), the Effective Medium (EM) model, and two versions of the Localised Effective Medium (LEM) model (LEM fine, LEM thick). These alternative representations were used within models of the field experiment and the calculated waveforms were used in an iterative inversion for fracture stiffness. Results show that the EM model and the EDFM model were unsuccessful in matching recorded waveforms. The fine LEM model and the explicit PFM model produced the best results especially after iterative optimisation of the fracture stiffness, giving confidence that further optimisation will lead to improved characterisation of the fracturing from the full waveform data

    Sui Lutris: A Blockchain Combining Broadcast and Consensus

    Full text link
    Sui Lutris is the first smart-contract platform to sustainably achieve sub-second finality. It achieves this significant decrease in latency by employing consensusless agreement not only for simple payments but for a large variety of transactions. Unlike prior work, Sui Lutris neither compromises expressiveness nor throughput and can run perpetually without restarts. Sui Lutris achieves this by safely integrating consensuless agreement with a high-throughput consensus protocol that is invoked out of the critical finality path but makes sure that when a transaction is at risk of inconsistent concurrent accesses its settlement is delayed until the total ordering is resolved. Building such a hybrid architecture is especially delicate during reconfiguration events, where the system needs to preserve the safety of the consensusless path without compromising the long-term liveness of potentially misconfigured clients. We thus develop a novel reconfiguration protocol, the first to show the safe and efficient reconfiguration of a consensusless blockchain. Sui Lutris is currently running in production as part of a major smart-contract platform. Combined with the Move Programming language it enables the safe execution of smart contracts that expose objects as a first-class resource. In our experiments Sui Lutris achieves latency lower than 0.5 seconds for throughput up to 5,000 certificates per second (150k ops/s with bundling), compared to the state-of-the-art real-world consensus latencies of 3 seconds. Furthermore, it gracefully handles validators crash-recovery and does not suffer visible performance degradation during reconfiguration

    Subthalamic nucleus activity dynamics and limb movement prediction in Parkinson’s disease

    Get PDF
    Whilst exaggerated bursts of beta frequency band oscillatory synchronization in the subthalamic nucleus have been associated with motor impairment in Parkinson’s disease, a plausible mechanism linking the two phenomena has been lacking. Here we test the hypothesis that increased synchronization denoted by beta bursting might compromise information coding capacity in basal ganglia networks. To this end we recorded local field potential activity in the subthalamic nucleus of 18 patients with Parkinson’s disease as they executed cued upper and lower limb movements. We used the accuracy of local field potential-based classification of the limb to be moved on each trial as an index of the information held by the system with respect to intended action. Machine learning using the naïve Bayes conditional probability model was used for classification. Local field potential dynamics allowed accurate prediction of intended movements well ahead of their execution, with an area under the receiver operator characteristic curve of 0.80 ± 0.04 before imperative cues when the demanded action was known ahead of time. The presence of bursts of local field potential activity in the alpha, and even more so, in the beta frequency band significantly compromised the prediction of the limb to be moved. We conclude that low frequency bursts, particularly those in the beta band, restrict the capacity of the basal ganglia system to encode physiologically relevant information about intended actions. The current findings are also important as they suggest that local subthalamic activity may potentially be decoded to enable effector selection, in addition to force control in restorative brain-machine interface applications

    The Macronuclear Genome of \u3cem\u3eStentor coeruleus\u3c/em\u3e Reveals Tiny Introns in a Giant Cell

    Get PDF
    The giant, single-celled organism Stentor coeruleus has a long history as a model system for studying pattern formation and regeneration in single cells. Stentor [1, 2] is a heterotrichous ciliate distantly related to familiar ciliate models, such as Tetrahymena or Paramecium. The primary distinguishing feature of Stentor is its incredible size: a single cell is 1 mm long. Early developmental biologists, including T.H. Morgan [3], were attracted to the system because of its regenerative abilities—if large portions of a cell are surgically removed, the remnant reorganizes into a normal-looking but smaller cell with correct proportionality [2, 3]. These biologists were also drawn to Stentor because it exhibits a rich repertoire of behaviors, including light avoidance, mechanosensitive contraction, food selection, and even the ability to habituate to touch, a simple form of learning usually seen in higher organisms [4]. While early microsurgical approaches demonstrated a startling array of regenerative and morphogenetic processes in this single-celled organism, Stentor was never developed as a molecular model system. We report the sequencing of the Stentor coeruleus macronuclear genome and reveal key features of the genome. First, we find that Stentor uses the standard genetic code, suggesting that ciliate-specific genetic codes arose after Stentor branched from other ciliates. We also discover that ploidy correlates with Stentor’s cell size. Finally, in the Stentor genome, we discover the smallest spliceosomal introns reported for any species. The sequenced genome opens the door to molecular analysis of single-cell regeneration in Stentor
    corecore