43 research outputs found

    Adaptations to hydrothermal vent life in Kiwa tyleri, a new species of yeti crab from the East Scotia Ridge, Antarctica

    Get PDF
    Hydrothermal vents in the Southern Ocean are the physiologically most isolated chemosynthetic environments known. Here, we describe Kiwa tyleri sp. nov., the first species of yeti crab known from the Southern Ocean. Kiwa tyleri belongs to the family Kiwaidae and is the visually dominant macrofauna of two known vent sites situated on the northern and southern segments of the East Scotia Ridge (ESR). The species is known to depend on primary productivity by chemosynthetic bacteria and resides at the warm-eurythermal vent environment for most of its life; its short-range distribution away from vents (few metres) is physiologically constrained by the stable, cold waters of the surrounding Southern Ocean. Kiwa tylerihas been shown to present differential life history adaptations in response to this contrasting thermal environment. Morphological adaptations specific to life in warm-eurythermal waters, as found on – or in close proximity of – vent chimneys, are discussed in comparison with adaptations seen in the other two known members of the family (K. hirsuta, K. puravida), which show a preference for low temperature chemosynthetic environments

    Reconstruction of the formation history of the Darwin Mounds, N Rockall Trough: How the dynamics of a sandy contourite affected cold-water coral growth

    Get PDF
    Cold-water coral mounds, formed through a feed-back process of cold-water coral growth and sediment baffling, have been studied all along the NE Atlantic continental margin. However, major questions remain concerning their formation history, especially their initiation and early development in relation to the surrounding sediment dynamics. For the first time, two small mounds located in a sandy contourite have been cored from the top to mound base: here, the formation history of the Darwin Mounds, located in the Northern Rockall Trough was investigated and reconstructed from two piston cores using a multidisciplinary approach. This consisted of CT-scanning for quantifying coral density changes with depth, grain-size analysis to obtain the hydrodynamic trends and radiocarbon and U-series dating to place the results into a wider paleoceanographic context. The results show that the Darwin Mounds formed during the early Holocene (~ 10 ka BP) through sediment baffling, mainly by Lophelia pertusa. The initiation of both mounds shows a similar pattern of increased current velocities resulting in coarser sediment deposition and a relatively high coral density with a peak of 23 vol%. The mound growth was rapid between ~ 10–9.7 ka BP (up to 277 cm ka− 1 in one of the mounds), with further vibrant growth periods around ~ 8.8 ka BP, 6.5 ka BP and 3.4 ka BP. The demise of the mounds ca. ~ 3 ka BP was likely caused by an intensification in bottom current velocities causing a hostile environment for coral growth in the contourite setting. In a wider context, the development of the Darwin Mounds appears to have responded to the relative strength and position of the Subpolar Gyre, which affected food supply to the corals, sedimentation rates, current speeds and other water mass properties in the area

    A combined imaging, deformation and registration methodology for predicting respirator fitting

    Get PDF
    N95/FFP3 respirators have been critical to protect healthcare workers and their patients from the transmission of COVID-19. However, these respirators are characterised by a limited range of size and geometry, which are often associated with fitting issues in particular sub-groups of gender and ethnicities. This study describes a novel methodology which combines magnetic resonance imaging (MRI) of a cohort of individuals (n = 8), with and without a respirator in-situ, and 3D registration algorithm which predicted the goodness of fit of the respirator. Sensitivity analysis was used to optimise a deformation value for the respirator-face interactions and corroborate with the soft tissue displacements estimated from the MRI images. An association between predicted respirator fitting and facial anthropometrics was then assessed for the cohort

    A Personal Respirator to Improve Protection for Healthcare Workers Treating COVID-19 (PeRSo)

    Get PDF
    Introduction: SARS-CoV-2 infection is a global pandemic. Personal Protective Equipment (PPE) to protect healthcare workers has been a recurrent challenge in terms of global stocks, supply logistics and suitability. In some settings, around 20% of healthcare workers treating COVID-19 cases have become infected, which leads to staff absence at peaks of the pandemic, and in some cases mortality.Methods: To address shortcomings in PPE, we developed a simple powered air purifying respirator, made from inexpensive and widely available components. The prototype was designed to minimize manufacturing complexity so that derivative versions could be developed in low resource settings with minor modification.Results: The “Personal Respirator – Southampton” (PeRSo) delivers High-Efficiency Particulate Air (HEPA) filtered air from a battery powered fan-filter assembly into a lightweight hood with a clear visor that can be comfortably worn for several hours. Validation testing demonstrates that the prototype removes microbes, avoids excessive CO2 build-up in normal use, and passes fit test protocols widely used to evaluate standard N95/FFP2 and N99/FFP3 face masks. Feedback from doctors and nurses indicate the PeRSo prototype was preferred to standard FFP2 and FFP3 masks, being more comfortable and reducing the time and risk of recurrently changing PPE. Patients report better communication and reassurance as the entire face is visible.Conclusion: Rapid upscale of production of cheaply produced powered air purifying respirators, designed to achieve regulatory approval in the country of production, could protect healthcare workers from infection and improve healthcare delivery during the COVID-19 pandemic

    Assessment of laminate damage micromechanisms using high resolution synchrotron radiation computed tomography & laminography

    No full text
    Laminated fibre reinforced polymer composite materials are increasingly being applied within critical structures, with a corresponding demand for reliable damage prediction tools to reduce the time and cost associated with product development. The present work is carried out to underpin the evolution of micromechanically-based models by providing developers with a resource of 4D (time & spatially resolved) microstructural and micromechanical data obtained from high-resolution synchrotron radiation computed tomography of essentially standard materials. The intention is to share data with the composites community as part of the public materials data repository that is currently being developed within the University of Southampton’s School of Engineering Sciences. Testing was conducted at the European Synchrotron Radiation Facility (ESRF) during in-situ loading of [90/0]s laminate in both small tensile coupon and larger plate forms. Image processing has been used to visualize the evolution of transverse ply cracks, longitudinal splits, inter-ply delaminations and associated interactions. Methods for full-field and full-volume crack displacement (e.g. mode I & II opening) are discussed

    Influence of voids on damage mechanisms in carbon/epoxy composites determined via high resolution computed tomography

    No full text
    A multi-scale computed tomography (CT) technique has been used to determine the material structure and damage mechanisms in hydrostatically loaded composite circumferential structures. Acoustic emission sensing was used to locate macroscopically regions of high damage under load to inform the computed tomography. The resultant images allow direct three-dimensional analysis of voids, fibre breaks and cracking, for which a high level of confidence can be placed in the results when compared to other indirect and/or surface-based methods. Ex situ analysis of loaded samples revealed matrix cracking in the longitudinally wound plies, whilst fibre breaks were observed in the circumferentially wound plies. The matrix cracking within the longitudinally wound plies is shown to interact directly with intralaminar voids. The correlation of voids with fibre breaks in the circumferentially wound plies is less distinct. A three-dimensional tessellation technique was used to analyse the spatial distribution of the voids and to compare with single fibre break locations. Whilst there was no first order correlation between fibre break densities and void volume fractions or void dimensions, a distinct correlation was found between voids and nearest neighbouring fibre breaks, where 2.6-5 times more fibre breaks occurred immediately adjacent to a void than would be expected for randomly distributed breaks

    In situ fibre fracture measurement in carbon–epoxy laminates using high resolution computed tomography

    No full text
    High resolution Synchrotron Radiation Computed Tomography (SRCT) has been used to capture fibre damage progression in a carbon–epoxy notched [90/0]s laminate loaded to failure. To the authors knowledge this provides the first direct in situ measurement of the accumulation of fibre fractures for a high performance material under structurally relevant load conditions (i.e. fractures within the bulk of an essentially conventional engineering laminate). A high level of confidence is placed in the measurements, as the failure processes are viewed internally at the relevant micromechanical length-scales, as opposed to previous indirect and/or surface-based methods. Whilst fibre breaks are the dominant composite damage mechanism considered in the present work, matrix damage, such as transverse ply cracks, 0? splits and delaminations, were also seen to occur in advance of extensive fibre breaks. At loads where fibre break density levels were significant, splitting and delamination were seen to separate the central 0? ply in the near notch region from the 90? plies. Fibre breaks were initially observed in isolated locations,consistent with the stochastic nature of fibre strengths. The formation of clusters of broken fibres was observed at higher loads. The largest clusters observed consisted of a group of eleven breaks and a group of fourteen breaks. The large clusters were observed at the highest load, at sites with no prior breaks, indicating they occurred within a relatively narrow load range. No strong correlation was found between the location of matrix damage and fibre breaks. The data achieved has been made available online at www.materialsdatacentre.com for ongoing model development and validation
    corecore