70 research outputs found

    Fabrication of Nanostructured Biological Material by Nanoimprinting and Photolithographic Methods

    Get PDF

    A semi-structured approach to curvilinear mesh generation around streamlined bodies

    Full text link
    We present an approach for robust high-order mesh generation specially tailored to streamlined bodies. The method is based on a semi-sructured approach which combines the high quality of structured meshes in the near-field with the flexibility of unstructured meshes in the far-field. We utilise medial axis technology to robustly partition the near-field into blocks which can be meshed coarsely with a linear swept mesher. A high-order mesh of the near-field is then generated and split using an isoparametric approach which allows us to obtain highly stretched elements aligned with the flow field. Special treatment of the partition is performed on the wing root juntion and the trailing edge --- into the wake --- to obtain an H-type mesh configuration with anisotropic hexahedra ideal for the strong shear of high Reynolds number simulations. We then proceed to discretise the far-field using traditional robust tetrahedral meshing tools. This workflow is made possible by two sets of tools: CADfix, focused on CAD system, the block partitioning of the near-field and the generation of a linear mesh; and NekMesh, focused on the curving of the high-order mesh and the generation of highly-stretched boundary layer elements. We demonstrate this approach on a NACA0012 wing attached to a wall and show that a gap between the wake partition and the wall can be inserted to remove the dependency of the partitioning procedure on the local geometry.Comment: Preprint accepted to the 2019 AIAA Aerospace Sciences Meetin

    Dynamic Permutational Isomerism in a closo-Cluster

    Get PDF
    Permutational isomers of trigonal bipyramidal [W2RhIr2(CO)9(η(5)-C5H5)2(η(5)-C5HMe4)] result from competitive capping of either a W2Ir or a WIr2 face of the tetrahedral cluster [W2Ir2(CO)10(η(5)-C5 H5)2] from its reaction with [Rh(CO)2(η(5)-C5HMe4)]. The permutational isomers slowly interconvert in solution by a cluster metal vertex exchange that is proposed to proceed by Rh-Ir and Rh-W bond cleavage and reformation, and via the intermediacy of an edge-bridged tetrahedral transition state. The permutational isomers display differing chemical and physical properties: replacement of CO by PPh3 occurs at one permutational isomer only, while the isomers display distinct optical power limiting behavior.We thank the Australian Research Council (Discovery Grant to M.G.H. and M.P.C., ARC Australian Research Fellowship to M.P.C.) for financial support. J.F. was the recipient of a China Scholarship Council ANU Postgraduate Scholarship

    Effect of Salt on Phosphorylcholine-based Zwitterionic Polymer Brushes.

    Get PDF
    A quantitative investigation of the responses of surface-grown biocompatible brushes of poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) to different types of salt has been carried out using ellipsometry, quartz crystal microbalance (QCM) measurements, and friction force microscopy. Both cations and anions of varying valency over a wide range of concentrations were examined. Ellipsometry shows that the height of the brushes is largely independent of the ionic strength, confirming that the degree of swelling of the polymer is independent of the ionic character of the medium. In contrast, QCM measurements reveal significant changes in mass and dissipation to the PMPC brush layer, suggesting that ions bind to phosphorylcholine (PC) groups in PMPC molecules, which results in changes in the stiffness of the brush layer, and the binding affinity varies with salt type. Nanotribological measurements made using friction force microscopy show that the coefficient of friction decreases with increasing ionic strength for a variety of salts, supporting the conclusion drawn from QCM measurements. It is proposed that the binding of ions to the PMPC molecules does not change their hydration state, and hence the height of the surface-grown polymeric brushes. However, the balance of the intra- and intermolecular interactions is strongly dependent upon the ionic character of the medium between the hydrated chains, modulating the interactions between the zwitterionic PC pendant groups and, consequently, the stiffness of the PMPC molecules in the brush layer
    corecore