12 research outputs found

    The ADI method for bounded real and positive real Lur'e equations

    Get PDF
    We propose an algorithm for the numerical solution of the Lur'e equations in the bounded real and positive real lemma for stable systems. The algorithm provides approximate solutions in low-rank factored form. We prove that the sequence of approximate solutions is monotonically increasing with respect to definiteness. If the shift parameters are chosen appropriately, the sequence is proven to be convergent to the minimal solution of the Lur'e equations. The algorithm is based on the ideas of the recently developed ADI iteration for algebraic Riccati equations. In particular, the matrices obtained in our iteration express the optimal cost in a certain projected optimal control problem

    Analysis of an iteration method for the algebraic Riccati equation

    Get PDF

    Analysis of an Iteration Method for the Algebraic Riccati Equation

    No full text

    Molecular markers reliably predict post-harvest deterioration of fresh-cut lettuce in modified atmosphere packaging

    No full text
    Salad crops: Longer-lasting lettuce Genetic studies have shown that the rate of deterioration of cut lettuce leaves in pre-packaged salads is a highly heritable trait, governed by gene regions that could be used to breed longer-lasting varieties. Many genetic studies have aimed at breeding better varieties of lettuce (Lactuca sativa), but most have focused upon those grown for whole heads, rather than the cut leaves that are becoming increasingly popular with consumers. An international team led by Ivan Simko, of the USDA in Salinas, California, have developed a genetic assay to distinguish fast- from slow-deteriorating lettuce varieties based on a single DNA region identified in a previous study. Their marker-based test may be useful in developing lettuces that show both disease resistance during cultivation, and a longer shelf life once leaves are cut for sale

    Application of in silico bulked segregant analysis for rapid development of markers linked to Bean common mosaic virus resistance in common bean

    No full text
    BACKGROUND: Common bean was one of the first crops that benefited from the development and utilization of molecular marker-assisted selection (MAS) for major disease resistance genes. Efficiency of MAS for breeding common bean is still hampered, however, due to the dominance, linkage phase, and loose linkage of previously developed markers. Here we applied in silico bulked segregant analysis (BSA) to the BeanCAP diversity panel, composed of over 500 lines and genotyped with the BARCBEAN_3 6K SNP BeadChip, to develop codominant and tightly linked markers to the I gene controlling resistance to Bean common mosaic virus (BCMV). RESULTS: We physically mapped the genomic region underlying the I gene. This locus, in the distal arm of chromosome Pv02, contains seven putative NBS-LRR-type disease resistance genes. Two contrasting bulks, containing BCMV host differentials and ten BeanCAP lines with known disease reaction to BCMV, were subjected to in silico BSA for targeting the I gene and flanking sequences. Two distinct haplotypes, containing a cluster of six single nucleotide polymorphisms (SNP), were associated with resistance or susceptibility to BCMV. One-hundred and twenty-two lines, including 115 of the BeanCAP panel, were screened for BCMV resistance in the greenhouse, and all of the resistant or susceptible plants displayed distinct SNP haplotypes as those found in the two bulks. The resistant/susceptible haplotypes were validated in 98 recombinant inbred lines segregating for BCMV resistance. The closest SNP (~25-32 kb) to the distal NBS-LRR gene model for the I gene locus was targeted for conversion to codominant KASP (Kompetitive Allele Specific PCR) and CAPS (Cleaved Amplified Polymorphic Sequence) markers. Both marker systems accurately predicted the disease reaction to BCMV conferred by the I gene in all screened lines of this study. CONCLUSIONS: We demonstrated the utility of the in silico BSA approach using genetically diverse germplasm, genotyped with a high-density SNP chip array, to discover SNP variation at a specific targeted genomic region. In common bean, many disease resistance genes are mapped and their physical genomic position can now be determined, thus the application of this approach will facilitate further development of codominant and tightly linked markers for use in MAS. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-903) contains supplementary material, which is available to authorized users

    Application of in silico bulked segregant analysis for rapid development of markers linked to Bean common mosaic virus resistance in common bean

    No full text
    BACKGROUND: Common bean was one of the first crops that benefited from the development and utilization of molecular marker-assisted selection (MAS) for major disease resistance genes. Efficiency of MAS for breeding common bean is still hampered, however, due to the dominance, linkage phase, and loose linkage of previously developed markers. Here we applied in silico bulked segregant analysis (BSA) to the BeanCAP diversity panel, composed of over 500 lines and genotyped with the BARCBEAN_3 6K SNP BeadChip, to develop codominant and tightly linked markers to the I gene controlling resistance to Bean common mosaic virus (BCMV). RESULTS: We physically mapped the genomic region underlying the I gene. This locus, in the distal arm of chromosome Pv02, contains seven putative NBS-LRR-type disease resistance genes. Two contrasting bulks, containing BCMV host differentials and ten BeanCAP lines with known disease reaction to BCMV, were subjected to in silico BSA for targeting the I gene and flanking sequences. Two distinct haplotypes, containing a cluster of six single nucleotide polymorphisms (SNP), were associated with resistance or susceptibility to BCMV. One-hundred and twenty-two lines, including 115 of the BeanCAP panel, were screened for BCMV resistance in the greenhouse, and all of the resistant or susceptible plants displayed distinct SNP haplotypes as those found in the two bulks. The resistant/susceptible haplotypes were validated in 98 recombinant inbred lines segregating for BCMV resistance. The closest SNP (~25-32 kb) to the distal NBS-LRR gene model for the I gene locus was targeted for conversion to codominant KASP (Kompetitive Allele Specific PCR) and CAPS (Cleaved Amplified Polymorphic Sequence) markers. Both marker systems accurately predicted the disease reaction to BCMV conferred by the I gene in all screened lines of this study. CONCLUSIONS: We demonstrated the utility of the in silico BSA approach using genetically diverse germplasm, genotyped with a high-density SNP chip array, to discover SNP variation at a specific targeted genomic region. In common bean, many disease resistance genes are mapped and their physical genomic position can now be determined, thus the application of this approach will facilitate further development of codominant and tightly linked markers for use in MAS. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-903) contains supplementary material, which is available to authorized users
    corecore