
        

Citation for published version:
Massoudi, A, Opmeer, M & Reis, T 2017, 'The ADI method for bounded real and positive real Lur'e equations',
Numerische Mathematik, vol. 135, no. 2, pp. 431-458. https://doi.org/10.1007/s00211-016-0805-2

DOI:
10.1007/s00211-016-0805-2

Publication date:
2017

Document Version
Peer reviewed version

Link to publication

The final publication is available at Springer via 10.1007/s00211-016-0805-2

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/161916003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/s00211-016-0805-2
https://researchportal.bath.ac.uk/en/publications/the-adi-method-for-bounded-real-and-positive-real-lure-equations(eaa72c7e-2b79-491f-abbf-55518f7fcda3).html


Numerische Mathematik manuscript No.
(will be inserted by the editor)

The ADI method for bounded real and positive real Lur’e
equations

Arash Massoudi · Mark R. Opmeer · Timo
Reis

Received: 08 October 2014 / Accepted: date

Abstract We propose an algorithm for the numerical solution of the Lur’e equations
in the bounded real and positive real lemma for stable systems. The algorithm pro-
vides approximate solutions in low-rank factored form. We prove that the sequence
of approximate solutions is monotonically increasing withrespect to definiteness. If
the shift parameters are chosen appropriately, the sequence is proven to be conver-
gent to the minimal solution of the Lur’e equations. The algorithm is based on the
ideas of the recently developed ADI iteration for algebraicRiccati equations [10]. In
particular, the matrices obtained in our iteration expressthe optimal cost in a certain
projected optimal control problem.
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1 Introduction

We consider an algorithm for the approximation of the minimal solutions of the
bounded real and positive real Lur’e equations. In this introduction we focus on the
bounded real case

A∗X+XA+C∗C=−K∗K,

B∗X+D∗C=− J∗K,

D∗D− I =− J∗J,

(1)
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whereA ∈ Cn×n is stable (i.e. all its eigenvalues are in the open left half-plane),
B∈ Cn×m, C∈ Cp×n andD ∈ Cp×m are given; the unknowns in this equation are the
Hermitian matrixX ∈Cn×n and the further matricesK ∈Cq×n, J∈Cq×m with q≤m.
We will call X a solution of (1), if there existq∈ N0 andK ∈ Cq×n, J ∈ Cq×m such
that (1) holds true. A solutionX is calledminimal, if X ≤ Y (i.e.,Y−X is positive
semi-definite) for all other solutionsY of (1). Note that ifD∗D− I is invertible, thenJ
andK can be eliminated and (1) becomes equivalent to the algebraic Riccati equation

A∗X+XA+C∗C+(XB+C∗D)(I −D∗D)−1(B∗X+D∗C) = 0.

An important application of the bounded real Lur’e equations isbounded real bal-
anced truncation[11,12], a model reduction method which preserves contractivity of
a system. In particular in this application there is a need for an efficient numerical
method for the large-scale case (i.e.,n is large). This large-scale case arises for exam-
ple when considering discretizations of partial differential equations (see Section 5
for a typical example). In the large scale case it is unfeasible to even store the dense
matrix X ∈ Cn×n. Our algorithm provides a sequence(Xk) of approximate solutions
of the formXk = R∗

kRk for someRk ∈ Cℓk×n with, typically, ℓk ≪ n (i.e.,Xk is given
in “low-rank factored form”). For a “shift parameter sequence” (α j )

k
j=1 with α j ∈ C

with Re(α j )> 0, the main computational cost in the algorithm consists of,for eachα j

( j = 1, . . . ,k), solving a linear system of the form(α j −A)x= v, wherev∈Cn×p. The
above features make the proposed algorithm attractive for the case wheren is large,
p is small andA is sparse. This situation is typical when considering discretizations
of partial differential equations.

The proposed algorithm is an extension of the recently developedADI methodfor
algebraic Riccati equations of the typeA∗X+XA+C∗C−XBB∗X = 0 [8,10], which
in turn is an extension of the ADI method for Lyapunov equations [7,9,21].

For the convergence analysis of the algorithm, we use the following connection
between the minimal solution of the bounded real Lur’e equation and an optimal
control problem. It is well-known that the quadratic form defined by the minimal
solution of the bounded real Lur’e equation (1) expresses the available storage[26].
Namely, for allx0 ∈ Cn there holds

x∗0Xx0 = sup
u∈L2(0,∞;Cm)

∫ ∞

0
(‖y(t)‖2−‖u(t)‖2)dt, (2)

where
ẋ(t) =Ax(t)+Bu(t), x(0) = x0,

y(t) =Cx(t)+Du(t),
(3)

see [24–26]. Thereby we follow the ideas in [10], which givesan interpretation of
the ADI method for the algebraic Riccati equation [8] in terms of the underlying
optimal control problem: The theoretical foundation for our algorithm is a sequence
of subspaces

Kk(α) := span{e−α1t , . . . ,e−αkt} ⊂ L2(0,∞). (4)

In this introduction we assume for notational simplicity that the “shift parameters”
α j are distinct (in the main part of the article we drop this assumption; the defi-
nition of Kk(α) has to be modified in case of non-distinct parameters). LetPk,p :
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L2(0,∞;Cp)→ L2(0,∞;Cp) denote the orthogonal projection ontoKk(α)⊗Cp. The
matrix Xk produced by our algorithm is proven to represent the optimalcost for the
following control problem (see Theorem 3)

x∗0Xkx0 = sup
u∈L2(0,∞;Cm)

∫ ∞

0
(‖(Pk,py)(t)‖2−‖u(t)‖2)dt, (5)

subject to (3). Since the spacesKk(α) are nested, this representation shows that the
sequence(Xk) is monotonically increasing with respect to monotonicity,that isXk ≥
Xk−1 for all k∈ N. In the case where

⋃

k∈N
Kk(α) = L2(0,∞), (6)

we immediately see that we will have convergence of(Xk) to X. The property (6) is
proven in [14] to be equivalent to thenon-Blaschke condition

∞

∑
j=1

Re(α j)

1+ |α j |2
= ∞. (7)

We note that (7) is for example satisfied if the parameters allbelong to a fixed compact
set contained in the open right half-plane (in particular, if the shift parameters are
periodic).

We further consider the ADI method for positive real Lur’e equation

A∗X+XA=−K∗K,

B∗X−C=− J∗K,

−(D∗+D) =− J∗J,

(8)

whereA∈ Cn×n is stable, andB∈ Cn×m, C ∈ Cm×n, D ∈ Cm×m. Our considerations
are based on the fact that the minimal solution expresses theavailable storage for
passivity, that is

x∗0Xx0 = sup
u∈L2(0,∞;Cm)

−2Re
∫ ∞

0
y(t)∗u(t)dt (9)

subject to (3).
At this point, we briefly summarize existing approaches to the solution of bounded

real and positive real Lur’e equations. IfI −D∗D (resp.D+D∗) is invertible, then, of
course, the huge variety of existing methods for algebraic Riccati equations (see [2]
for an overview) can be used. In the case where this matrix is however singular, there
are only few methods available: Thestructured doubling algorithmwas recently de-
veloped for Lur’e equations [16]. In contrast to our method,the structured doubling
algorithm does not provide factorizations of low rank form and is therefore mem-
ory consuming in the large-scale case. Another approach to numerical solution was
presented in [15], where some “critical part” of the Lur’e equation is extracted such
that an algebraic Riccati equation is obtained. The latter is then solved by Newton-
Kleinman iteration [2]. This method can be formulated such that approximate low
rank factors are obtained. A drawback of this approach is that the extraction of the
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critical part consists of successive nullspace computations which may be numerically
unstable. We will give a slightly more detailed discussion of the latter method in
Remark 9 b).

This article is organized as follows. In the forthcoming Section 2, we introduce
the systems theoretic and functional analytic on fundamentals of optimal control and
their relations to the minimal solutions of positive real and bounded real Lur’e equa-
tions. Section 3 is devoted to the spacesKk(α) from (4). We consider an orthonormal
basis for these spaces (the Takenaka–Malmquist system). Wefurther consider orthog-
onal projections of the solution maps of the system (3) to thespaceKk(α) from (4),
and we provide matrix representations of these maps with respect to this basis. In
Section 4 we apply these findings to the optimal control problem by showing that
the matrix representations from Section 3 can be used to determine the solutionXk

in (5). This allows to formulate iterative algorithms for the determination of the min-
imal solutions of the Lur’e equations (1) and (8). We also prove convergence of the
algorithm. In Section 5 we consider a numerical example.

At this point, we would like to declare some notation:L2(0,∞;Cp) denotes the
Lebesgue space of square integrableCp-valued functions, which is provided with
the standard inner product〈 f ,g〉L2 :=

∫ ∞
0 g∗(τ) f (τ)dτ. In this article, we use the

Euclidean inner product inCn, i.e., 〈x,y〉Cn := y∗x. The norm in the inner product

spaceX is ‖x‖X := 〈x,x〉1/2
X . X ⊗Y denotes the tensor product of the inner product

spacesX andY. We use the inner product inX ⊗Y as introduced in [22, Sec. 4.5].
The tensor product of linear operatorsA1 andA2 is denoted byA1⊗A2. We identify
L2(0,∞;Cp) = L2(0,∞;C)⊗Cp. A∗ is the adjoint of a linear operatorA. The identity
matrix of sizep× p is denoted byIp. We omit the subscripts in norms, inner products
and identity matrices, if it is clear from context.

2 Linear systems and optimal control

We present the connection between the minimal solutions of the Lur’e equations (1)
and (8) to the optimization problems (2) and (9) respectively. We follow the approach
in [3] by giving an explicit formula of the minimal solution of the Lur’e equation in
terms of operators associated with the linear system (3). This will be the theoretical
basis for our algorithms, which are based on discretizations of these operators.

Definition 1 (Output map, input-output map) Assume thatA ∈ Cn×n is stable,
B∈ Cn×m, C ∈ Cp×n andD ∈ Cp×m. Consider the following maps associated to the
system (3):

a) theoutput mapΨ :Cn → L2(0,∞;Cp) which maps the initial statex0 to the output
y (for controlu= 0),

Ψx0 = t 7→CeAtx0; (10)

b) theinput-output mapF : L2(0,∞;Cm) → L2(0,∞;Cp) which maps the inputu to
the outputy (for initial conditionx0 = 0);

Fu= t 7→
∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t). (11)
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With the above introduced operators, the supremized expression in (2) is‖Ψx0 +
Fu‖2

L2 −‖u‖2
L2; the supremized expression in (9) becomes−2Re〈u,Ψx0+Fu〉L2.

Now we study solvability and solutions of general Lur’e equations of the form

A∗X+XA−C∗QC=−K∗K,

B∗X− (D∗QC+S∗C) =−J∗K,

−(D∗QD+S∗D+D∗S+R) =−J∗J,

(12)

whereA∈Cn×n is stable,B∈Cn×m, C∈Cp×n, D ∈Cp×m andQ∈Cp×p, S∈Cp×m,
R∈ Cm×m with R= R∗ and Q = Q∗. Note that we obtain the bounded real Lur’e
equation by settingQ=−I , S= 0 andR= I ; the positive real Lur’e equation is given
by (12) with p= m, Q= R= 0 andS= I .

The following concepts are crucial for the existence of solutions and their relation
to optimization problems.

Definition 2 (Popov function, Popov operator)Assume thatA ∈ Cn×n is stable,
B∈ Cn×m, C ∈ Cp×n, D ∈ Cp×m andQ∈ Cp×p, S∈ Cp×m, R∈ Cm×m with R= R∗

andQ= Q∗. Then, forG(s) =C(sI−A)−1B+D, thePopov functionΠ : ıR→Cm×m

is defined by

Π(ıω) := G(ıω)∗QG(ıω)+G(ıω)∗S+S∗G(ıω)+R.

With F as defined in Definition 1, thePopov operatorR : L2(0,∞;Cm)→ L2(0,∞;Cm)
is

R := F
∗QF+FS+S∗F+R. (13)

Next, we give some comments on solvability of Lur’e equations and their specializa-
tion to the bounded real and positive real case.

Remark 1 (Popov operator, Popov function, solvability of Lur’e equations)

a) The Popov operatorR is positive semidefinite, if, and only if, the Popov function
fulfills Π(ıω) ≥ 0 for all ω ∈ R [3]. If the Lur’e equation (12) is solvable, then
the Popov function fulfillsΠ(ıω) ≥ 0 for all ω ∈ R [17] (and thusR is positive
semidefinite).

b) If the Popov function fulfillsΠ(ıω)≥ 0 for all ω ∈ R and the system (3) is con-
trollable, then there exists a minimal solution of the Lur’eequation (12). This
follows from the results in [17] and the substitutions

X −X, C∗QC Q,

C∗QD+C∗S C, D∗QD+S∗D+D∗S+R R,

“minimal solution” “maximal solution”.

(14)

c) In the bounded real case, the Popov operator readsI − F∗F. Solvability of the
bounded real Lur’e equation (1) therefore implies‖F‖≤ 1. This property is called
contractivityand is equivalent to theH∞ norm ofG(s) being not larger that one
[27, Sec. 4.5].
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d) In the positive real case, the Popov operator is given byR = F∗+F, whose posi-
tive semidefiniteness is calledpassivity. The Popov function readsıω 7→G∗(ıω)+
G(ıω). Passivity is equivalent topositive realnessof G(s). That is,G(λ )+G(λ )∗ ≥
0 for all λ ∈C with Re(λ )> 0 [26].

Now we present the relation between the minimal solutions and optimization prob-
lems subject to the linear system (3).

Theorem 1 Assume that A∈ Cn×n is stable, B∈ Cn×m, C ∈ Cp×n, D ∈ Cp×m and
Q∈ Cp×p, S∈ Cp×m, R∈Cm×m with R= R∗ and Q= Q∗. LetF be the input-output
map andΨ be the output map of the system(3). Assume that X is the minimal solution
of the Lur’e equations(12)and let K∈ Cq×n, J∈ Cq×m be such that(12)holds true.
Then the following hold true:

a) The system
ẋ(t) =Ax(t)+Bu(t), x(0) = x0,

yΞ (t) =Kx(t)+ Ju(t),
(15)

with output mapΨΞ :Cn → L2(0,∞;Cq) and input-output mapFΞ : L2(0,∞;Cm)→
L2(0,∞;Cq) is outer. That is,FΞ has dense range.

b) For all u∈ L2(0,∞;Cm) and x0 ∈ Cn holds

−
〈[

Fu+Ψx0

u

]

,

[

Q S
S∗ R

][

Fu+Ψx0

u

]〉

L2
= x∗0Xx0−‖FΞu+ΨΞx0‖2

L2. (16)

c) The operatorFΞ and the Popov operator(13)are related by

R = F
∗
ΞFΞ . (17)

d) The minimal solution fulfills

X =Ψ ∗
ΞΨΞ −Ψ∗QΨ . (18)

e) The operatorsFΞ ,ΨΞ , the output mapΨ , and the input-output mapF of the system
(3) are related by

F
∗
ΞΨΞ = (F∗Q+S∗)Ψ . (19)

Proof

a) LetX be the minimal solution. Then, by using the substitutions in(14), it has been
shown in [17, Sec. 5] that

im

[

−λ I +A B
K J

]

=C
n+q ∀λ ∈ C with Re(λ )> 0.

Then it follows by a combination of [6, Thm. 3.3 & Thm. 5.1] that (15) is outer.
b) Using [26], we see that for allt ≥ 0 the solutions of (3) fulfill thedissipation

inequality

x∗0Xx0− x(t)∗Xx(t) =−
∫ t

0

(

y(τ)
u(τ)

)∗ [
Q S
S∗ R

](

y(τ)
u(τ)

)

dτ +
∫ t

0
‖Kx(τ)+ Ju(τ)‖2dτ.

Using thatu∈ L2(0,∞;Cm) andA is stable, we obtain that the state trajectory of
the system (15) fulfills limt→∞ x(t) = 0. Then the result follows by taking the limit
t → ∞.
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c)-e) Defining the inner product inCm×L2 by the sum of inner products inCm andL2,
(16) can be rewritten as

〈(

x0

u

)

,

[

Ψ ∗QΨ Ψ∗(QF+S)
(F∗Q+S∗)Ψ R

](

x0

u

)〉

Cm×L2

=

〈(

x0

u

)

,

[

Ψ∗
ΞΨΞ −X Ψ∗

ΞFΞ
F∗

ΞΨΞ F∗
ΞFΞ

](

x0

u

)〉

Cm×L2
∀u∈ L2(0,∞;Cm),x0 ∈ C

n.

This in turn leads toR = F∗
ΞFΞ , X =Ψ∗

ΞΨΞ −Ψ∗QΨ andF∗
ΞΨΞ = (F∗Q+S∗)Ψ .

⊓⊔

Remark 2 (Lur’e equations)

a) Equation (17) is calledspectral factorization[3,27].
b) The minimal solution of the bounded real Lur’e equation readsX =Ψ ∗

ΞΨΞ +Ψ∗Ψ .
In the positive real case, we haveX =Ψ ∗

ΞΨΞ . In both cases,X is positive semidef-
inite.

c) The property ofFΞ being outer implies that for allx0 ∈ Cn, ε > 0, there exists
someu ∈ L2(0,∞;Cm) with ‖FΞ u+ΨΞ x0‖2 < ε. As a consequence, we have,
from Theorem 1 e), that for allx0 ∈ Cn

x∗0Xx0 = sup
u∈L2(0,∞;Cm)

−
〈[

Fu+Ψx0

u

]

,

[

Q S
S∗ R

][

Fu+Ψx0

u

]〉

L2
. (20)

It follows from Theorem 1 b) that the supremum in the right hand side of the
above expression is attained atu ∈ L2(0,∞;Cm) (i.e. u is an optimal control) if,
and only if,FΞ u+ΨΞ x0 = 0. Using Theorem 1 a), this means that there exists
somex : [0,∞)→ Cn such that the differential-algebraic equation

[

I 0
0 0

][

ẋ(t)
u̇(t)

]

=

[

A B
K L

][

x(t)
u(t)

]

, x(0) = x0 (21)

is fulfilled. Then it follows by a transformation of the matrix pencil
[

sI−A −B
−K −L

]

into
Kronecker form [4, Chap. XII,§7] thatx andu can be expressed by sums of expo-
nential functions of type∑ℓ

k=1 pk(t)e−λkt , wherep1, . . . , pℓ are vector-valued com-
plex polynomials, and the distinct numbersλ1, . . . ,λℓ are the generalized eigen-
values of the pencil

[

sI−A −B
−K −L

]

. By using the substitutions in (14), the latter are
shown in [17] to be the negatives of the stable generalized eigenvalues of theeven
matrix pencil

sE −A =





0 −sI+A B
sI+A∗ −C∗QC −C∗QD−C∗S

B∗ −D∗QC−S∗C −D∗QD−S∗D−D∗S−R



 . (22)

We will make use of this fact in Section 5 to improve numericalperformance by
suitable choice of the shift parameters.
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3 Convolution systems and matrix representations

In this section we review results from [10] which give matrixrepresentations of the
adjoints of the output mapΨ and the input-output mapF with respect to a certain or-
thonormal basis ofL2. These matrix representations will be crucial in our algorithms.

Definition 3 Let (α j )
∞
j=1 be a complex sequence with Re(α j) > 0 for all j ∈ N. We

define the correspondingTakenaka–Malmquist system(ψ j )
∞
j=1, ψ j ∈ L2(0,∞) by

φ1 = t 7→ e−α1t , ψ1 =
√

2Re(α1) ·φ1,

φ j =φ j−1− (α j +α j−1) · (e−α j · ∗φ j−1), ψ j =
√

2Re(α j ) ·φ j , for j ≥ 2, (23)

where∗ denotes the convolution product, i.e.,(g∗h)(t) =
∫ t

0 g(t − τ)h(τ)dτ.
The space generated by the firstk Takenaka–Malmquist functions is denoted by
Kk(α).

Remark 3

a) The Takenaka–Malmquist system is orthonormal (see e.g. [14, Appendix B] for a
proof).

b) Theconvolution system(ϕ j)
∞
j=1, ϕ j ∈ L2(0,∞), which is defined by

ϕ1 := t 7→ e−α1t , ϕ j := e−α j · ∗ϕ j−1, (24)

fulfills span{ϕ1, . . . ,ϕk}= Kk(α).
c) Consider the distinct numbersq1, . . . ,qJ with {q1, . . . ,qJ} = {α1, . . . ,αk}. Let ℓ j

be the number of indices in whichq j appears in(α j )
k
j=1 (thusk = ℓ1+ . . .+ ℓJ).

Then

span{ϕ1, . . . ,ϕk}=
J

⊕

j=1

span
{

t 7→ t l e−q j t
∣

∣

∣
l = 0, . . . , ℓ j −1

}

,

see [10,14].

The most important property of the above introduced space isthat it isF∗-invariant.

Theorem 2 Let A∈ Cn×n stable and B∈ Cn×m, C∈ Cp×n, D ∈ Cp×m. For F as in
(11)andKk(α) the sequence of subspaces from Definition 3, we have that

F
∗ (Kk(α)⊗C

p)⊂ Kk(α)⊗C
m.

Proof The proof is contained in [10] for the caseD= 0. The general result follows by
regardingD as a pointwise multiplication operatorD : L2(0,∞;Cm)→ L2(0,∞;Cp).
The latter obviously fulfills

D∗ (Kk(α)⊗C
p)⊂ Kk(α)⊗C

m. ⊓⊔

The above invariance gives rise to the existence of matrix representations ofF∗ with
respect to the Takenaka–Malmquist systems. These will be explicitly constructed in
the following.
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Definition 4 Let (α j)
∞
j=1 be such that Re(α j ) > 0 for all j ∈ N. Let (ψ j)

∞
j=1, ψ j ∈

L2(0,∞) be the corresponding Takenaka–Malmquist system (23). Fork∈N, the map-
ping ιk : Ck → L2(0,∞) is defined by

ιkx=
k

∑
j=1

x j ·ψ j . (25)

Further, for the identity matrixIp ∈Cp×p, we setιk,p := ιk⊗ Ip : Ckp→ L2(0,∞;Cp).

Orthonormality of the Takenaka–Malmquist system implies that ιk (and thus also
ιk,p) defines an isometric embedding. The orthogonal projector onto Kk(α)⊗C

p is
therefore given by

Pk,p = ιk,pι∗k,p : L2(0,∞;Cp)→ L2(0,∞;Cp). (26)

With operatorsΨ andF as in (10) and (11), we define the matrices

Fk = ι∗k,pFιk,m ∈ C
kp×km, Sk = ι∗k,pΨ ∈ C

kp×n. (27)

We have

Pk,pΨ = ιk,pSk, Pk,pF= Pk,pFPk,m = ιk,pFkι∗k,m, (28)

where the equalityPk,pF=Pk,pFPk,m follows by taking adjoints inF∗Pk,p=Pk,mF
∗Pk,p

and the latter equality follows from Theorem 2.
Alg. 1 from [10] provides a recursive method to computeSk andFk. The determi-

nation ofSk is based on the fact that the unnormalized Takenaka–Malmquist system
system(φ j )

∞
j=1 (23) fulfills

Ψ∗(φ1v) = (α1I −A∗)−1C∗v,

Ψ∗(φ j v) =Ψ∗(φ j−1v)− (α j +α j−1)(α j I −A∗)−1Ψ ∗(φ j−1v) ∀v∈ C
p,

see [10, Corollary 13]. The determination ofFk relies on the following consideration:
Let Λ : L2(0,∞;Cn) → L2(0,∞;Cp) be the input-output map of the system (3) with
B = I andD = 0. ThenF = ΛB+D, whereB∈ Cn×m andD ∈ Cp×m are regarded
as constant multiplication operators onL2(0,∞;Cm). ThenΛ∗ satisfies the recursion
(here(ϕ j )

∞
j=1 is the convolution system from (24))

Λ∗(ϕ1v) = (α1I −A∗)−1C∗vϕ1,

Λ∗(ϕ jv) = (α j I −A∗)−1C∗vϕ j +(α j I −A∗)−1Λ∗(ϕ j−1v) ∀v∈ C
p,

see [10, Corollary 14]. A transition from the basis(ϕ1, . . . ,ϕk) to the basis(ψ1, . . . ,ψk)
then gives rise to the construction ofFk. The precise construction is given in Alg. 1
(we refer to [10] for further details).
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Algorithm 1 ADI iteration for output and input-output maps.
Input: A ∈ C

n×n a stable matrix,B ∈ C
n×m, C ∈ C

p×n, D ∈ C
p×m and shift parametersα1, . . . ,αk ∈ C

with Re(αi)> 0.
Output: Sk = ι∗k,pΨ ∈ Ckp×n, Fk = ι∗k,pFιk,m ∈ Ckp×km

1: V1 = (α1I −A∗)−1C∗

2: S1 =
√

2Re(α1) ·V∗
1

3: Q1 =
√

2Re(α1) ·V∗
1 B

4: L1 =
1√

2Re(α1)

5: F1 = Q1L1+D
6: for i = 2,3, . . . ,k do
7: Vi =Vi−1− (αi +αi−1) · (αi I −A∗)−1Vi−1
8: Si = [S∗i−1 ,

√

2Re(αi) ·Vi ]
∗

9: Qi = [Qi−1 ,
√

2Re(αi) ·V∗
i B]

10: γi =

√

Re(α j )

Re(α j−1)

11: Mi,1 =











1√
2Re(α1)

. . .
1√

2Re(αi )











, Mi,2 =











α1+αi

α1−αi α2+αi

. . .
αi−1−αi αi +αi











,

Mi,3 =







1 . . . 1
...

...
1






, Mi,4 =

[

0 I
1 0

]

, Mi,5 =











−
√

2Re(α1)

. . .

−
√

2Re(αi−1)
1











12: Mi = M−1
i,1 M−1

i,2 M−1
i,3 M−1

i,4 M−1
i,5

13: Li =

[

γiLi−1 0
0 0

]

−Mi

[

Li−1 0
0 1

][

γi(αi +αi−1)I 0
[0,γi ] −1

]

14: Fi =

[

[Fi−1,0]
Qi(Li ⊗ Im)+

[

0,D
]

]

15: end for

4 The projected optimal control problem

In this section we consider the optimal control problems (2)& (3) and (9) & (3),
and their relations to the corresponding optimal control problems in which the output
y is replaced byPk,py with the orthogonal projectorPk,p as in (26) onto the space
Kk(α)⊗C

p generated by the truncated Takenaka–Malmquist system. Thereby we
present “discretized versions” of Theorem 1. That is, the input-output mapF and the
output mapΨ in (10) and (11) are replaced withFk andSk in (27), i.e., the represent-
ing matrix of their orthogonal projection ontoKk(α)⊗Cp. Then the relations (17)
and (19) become matrix equations which have to be solved for “discretized versions”
of FΞ andSΞ . These are thereafter, by an accordant modification of (18),used to con-
structXk. We start with the bounded real case. Towards a better understanding, the
reader should compare the following result with Theorem 1 specialized toQ= −Ip,
R= Im andS= 0.

Theorem 3 Assume that A∈ Cn×n is stable, B∈ Cn×m, C ∈ Cp×n and D∈ Cp×m.
Further assume that bounded real Lur’e equation(1) has a minimal solution X∈
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Cn×n. DefineΨ andF by (10) and (11). Let (α j)
∞
j=1 be a complex sequence with

Re(α j ) > 0 for all j ∈ N, and let Fk ∈ Ckp×km, Sk ∈ Ckp×n be defined as in(27).
Then the matrix I−F∗

k Fk ∈Ckm×km is positive semidefinite. In particular, there exists
a matrix FΞ ,k ∈C

ℓk×km with full row rank and

I −F∗
k Fk = F∗

Ξ ,kFΞ ,k. (29)

Further, there exists some SΞ ,k ∈C
ℓk×n such that

F∗
Ξ ,kSΞ ,k =−F∗

k Sk. (30)

For the orthogonal projector Pk,p as in(26), the matrix Xk defined by

Xk = S∗kSk+S∗Ξ ,kSΞ ,k, (31)

fulfills

x∗0Xkx0 = sup
u∈L2(0,∞;Cm)

‖Pk,pFu+Pk,pΨx0‖2−‖u‖2 ∀x0 ∈ C
n. (32)

Proof Let X ∈ Cn×n be a minimal solution of the bounded real Lur’e equation (1).
Then Theorem 1 implies that the operatorI − F

∗
F is positive semidefinite. Since

Pk,p ≤ I we haveF∗Pk,pF ≤ F∗F, which implies thatI −F∗Pk,pF ≥ I −F∗F. Hence
I −F∗Pk,pF is as well positive semidefinite. We have

I −F∗
k Fk = I − ι∗k,mF

∗ιk,pι∗k,pFιk,m = ι∗k,m(I −F
∗Pk,pF)ιk,m ≥ 0,

so thatI −F∗
k Fk is positive semidefinite. Thus, there exists someFΞ ,k ∈ C

ℓk×km with
full row rank and satisfying (29).

We prove that im(F∗
k Sk) ⊂ im(FΞ ,k). By taking orthogonal complements, this is

equivalent to
ker(FΞ ,k)⊂ ker(S∗kFk).

Let x0 ∈Cn andu∈ L2(0,∞;Cm). Then, by stability ofA, the statex(t) of the system
(3) tends to zero, ift tends to infinity. Then (16) together withR= Im andQ= −Ip

yields
x∗0Xx0 ≥ ‖Fu+Ψx0‖2−‖u‖2.

By further using (28) and (29), we see that

x∗0Xx0 ≥ ‖Fu+Ψx0‖2−‖u‖2

≥ ‖Pk,pFu+Pk,pΨx0‖2−‖Pk,mu‖2−‖(I −Pk,m)u‖2

= ‖ιk,pFkι∗k,mu+ ιk,pSkx0‖2−‖ι∗k,mu‖2−‖(I −Pk,m)u‖2

= ‖Fkι∗k,mu+Skx0‖2−‖ι∗k,mu‖2−‖(I −Pk,m)u‖2

= 〈ι∗k,mu,(F∗
k Fk− I)ι∗k,mu〉+2Re〈ι∗k,mu,F∗

k Skx0〉+ ‖Skx0‖2−‖(I −Pk,m)u‖2

= −〈ι∗k,mu,F∗
Ξ ,kFΞ ,k)ι∗k,mu〉+2Re〈ι∗k,mu,F∗

k Skx0〉+ ‖Skx0‖2−‖(I −Pk,m)u‖2

= −‖FΞ ,kι∗k,mu‖2+2Re〈ι∗k,mu,F∗
k Skx0〉+ ‖Skx0‖2−‖(I −Pk,m)u‖2.

(33)
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Assume that kerFΞ ,k 6⊂ kerS∗kFk. Then there exists some ˆu∈Ckm with S∗kFkû 6= 0 and
FΞ ,kû = 0, and thus we can choose somex0 ∈ Cn such thatx∗0S∗kFkû 6= 0. Then, for
λ ∈ C, substitutingx0 andu := ιk,m(λ û) ∈ L2(0,∞;Cm) into (33), we obtain

x∗0Xx0 ≥−‖FΞ ,kι∗k,mιk,m(λ û)‖2+2Re〈ι∗k,mιk,m(λ û),F∗
k Skx0〉+‖Skx0‖2−‖(I−Pk,m)ιk,m(λ û)‖2

=−‖λFΞ ,kû‖2+2Re(λ 〈û,F∗
k Skx0〉)+ ‖Skx0‖2

= 2Re(λ 〈û,F∗
k Skx0〉)+ ‖Skx0‖2.

In particular, by an appropriate choice ofλ ∈ C, we can make the expression on the
right hand side arbitrarily large, which leads to a contradiction. Hence ker(FΞ ,k) ⊂
ker(S∗kFk).

SinceFΞ ,k has full row rank,FΞ ,kF∗
Ξ ,k is invertible and therefore

SΞ ,k := (FΞ ,kF
∗
Ξ ,k)

−1FΞ ,kFkSk (34)

is well-defined. We now show that it satisfies (30). Letx ∈ Cn. By the above es-
tablished subspace inclusion im(F∗

k Sk) ⊂ im(F∗
Ξ ,k), there exists az∈ Ckm such that

F∗
k Skx= F∗

Ξ ,kz. Then

F∗
Ξ ,kSΞ ,kx=F∗

Ξ ,k(FΞ ,kF
∗
Ξ ,k)

−1FΞ ,kFkSkx=F∗
Ξ ,k(FΞ ,kF

∗
Ξ ,k)

−1FΞ ,kF
∗
Ξ ,kz=F∗

Ξ ,kz=F∗
k Skx.

Sincex ∈ Cn was arbitrary, this proves thatF∗
Ξ ,kSΞ ,k = F∗

k Sk, i.e the above defined
SΞ ,k satisfies (30).

It remains to prove thatXk as in (31) fulfills (32). Using (29) and (30), we have
for all x0 ∈Cn andu∈ L2(0,∞;Cm) that

‖Pk,pFu+Pk,pΨx0‖2−‖u‖2

=−〈ι∗k,mu,F∗
Ξ ,kFΞ ,kι∗k,mu〉+2Re〈ι∗k,mu,F∗

k Skx0〉+ ‖Skx0‖2−‖(I −Pk,m)u‖2

=−〈ι∗k,mu,F∗
Ξ ,kFΞ ,kι∗k,mu〉−2Re〈ι∗k,mu,F∗

Ξ ,kSΞ ,kx0〉+ ‖Skx0‖2−‖(I −Pk,m)u‖2

=−‖FΞ ,kι∗k,mu+SΞ ,kx0‖2+ ‖SΞ ,kx0‖2+ ‖Skx0‖2−‖(I −Pk,m)u‖2

=−‖FΞ ,kι∗k,mu+SΞ ,kx0‖2−‖(I −Pk,m)u‖2+ x∗0Xkx0

≤ x∗0Xkx0.

This gives rise to

x∗0Xkx0 ≥ sup
u∈L2(0,∞;Cm)

‖Pk,pFu+Pk,pΨx0‖2−‖u‖2.

On the other hand, using the surjectivity ofFΞ ,k, there exists some ˆu ∈ Ckm with
FΞ ,kû = −SΞ ,kx0. Then, foru = ιk,mû, we see that equality holds true in the above
calculations. This proves (32). ⊓⊔

Remark 4 (Bounded real Lur’e equations and projected optimal control problems)
The formula (34) forSΞ ,k shows thatXk equalsS∗k[I +FkF∗

Ξ ,k(FΞ ,kF∗
Ξ ,k)

−2FΞ ,kF∗
k ]Sk.

It is easily verified thatF∗
Ξ ,k(FΞ ,kF∗

Ξ ,k)
−2FΞ ,k is the Moore-Penrose pseudo-inverse of

F∗
Ξ ,kFΞ ,k. Therefore,Xk = S∗k[I +Fk(I −F∗

k Fk)
+F∗

k ]Sk.
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Next we prove that the sequence(Xk) is monotonically increasing with respect to def-
initeness. We further present a criterion on the shift parameters such that convergence
to the minimal solutions is achieved.

Theorem 4 Assume that A∈ C
n×n is stable, B∈ C

n×m, C ∈ C
p×n and D∈ C

p×m.
Further assume that the bounded real Lur’e equation(1) has a minimal solution
X ∈ Cn×n. DefineΨ andF by (10)and(11).
Let (α j )

∞
j=1 be a complex sequence withRe(α j ) > 0 for all j ∈ N, and let Fk ∈

Ckp×km, Sk ∈ Ckp×n be defined as in(27); let Xk be defined as in Theorem 3.
Then

Xk ≤ Xk+1, Xk ≤ X ∀k∈ N,

and the sequence(Xk) converges. If, additionally,(α j )
∞
j=1 satisfies the non-Blaschke

condition(7), then(Xk) converges to X.

Proof Forx0 ∈ Cn andu∈ L2(0,∞;Cm) we have

‖Pk,pFu+Pk,pΨx0‖2
L2 ≤ ‖Pk+1,pFu+Pk+1,pΨx0‖2

L2,

sinceKk(α)⊂ Kk+1(α). It follows that

x∗0Xkx0 = sup
u∈L2(0,∞;Cm)

‖Pk,pFu+Pk,pΨx0‖2−‖u‖2

≤ sup
u∈L2(0,∞;Cm)

‖Pk+1,pFu+Pk+1,pΨx0‖2−‖u‖2 = x∗0Xk+1x0.

Similarly, using that

‖Pk,pFu+Pk,pΨx0‖2
L2 ≤ ‖Fu+Ψx0‖2

L2,

we obtain
x∗0Xkx0 ≤ x∗0Xx0 ∀x0 ∈C

n.

Convergence of the sequence(Xk) follows by the fact that it is non-decreasing and
bounded from above byX with respect to definiteness.
In the case where the non-Blaschke condition (7) is fulfilled, the union of the spaces
Kk(α) over all k ∈ N is dense inL2(0,∞;Cp) [14]. The sequence(Pk,p) therefore
converges to the identity in the strong operator topology, that is

lim
k→∞

Pk,py= y ∀y∈ L2(0,∞;Cp). (35)

Let x0 ∈Cn andε > 0. By (20) there exists someu∈ L2(0,∞;Cm) with

x∗0Xx0 < ‖Fu+Ψx0‖2−‖u‖2+ ε
2.

By (35), there exists someN ∈ N with ‖(Fu+Ψx0)−Pk,p(Fu+Ψx0)‖2 ≤ ε
2 for all

k≥ N. Then we obtain that for allk≥ N there holds

x∗0Xx0 < ‖Fu+Ψx0‖2−‖u‖2+ ε
2

≤ ‖Pk,pFu+Pk,pΨx0‖2+ ‖(Fu+Ψx0)−Pk,p(Fu+Ψx0)‖2−‖u‖2+ ε
2

≤ ‖Pk,pFu+Pk,pΨx0‖2−‖u‖2+ ε ≤ x∗0Xkx0+ ε.
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Using further thatXk ≤ X, we obtain

|x∗0(X−Xk)x0|= x∗0Xx0− x∗0Xkx0 < ε ∀k≥ N.

It follows that the sequence(Xk) converges toX. ⊓⊔

Next we introduce a slighty different, numerically more advantageous, represen-
tation for the matrixXk as in (31).

Theorem 5 Assume that A∈ Cn×n is stable, B∈ Cn×m, C ∈ Cp×n and D∈ Cp×m.
Further assume that the bounded real Lur’e equation(1) has a minimal solution
X ∈ Cn×n. DefineΨ andF by (10)and(11).
Let (α j )

∞
j=1 be a complex sequence withRe(α j ) > 0 for all j ∈ N, and let Fk ∈

Ckp×km, Sk ∈ Ckp×n be defined as in(27).
Then there exists a matrix Gk ∈ Cℓ̃k×kp with full row rank and

I −FkF
∗
k = G∗

kGk. (36)

Further, there exists some Rk ∈ Cℓ̃k×n such that

G∗
kRk = Sk. (37)

The matrix Xk as in(31) fulfills
Xk = R∗

kRk. (38)

Proof The matrixI −FkF∗
k ∈ Ckp×kp is positive semidefinite by Theorem 3. There-

fore, I −F∗
k Fk ∈ C

km×km is positive semidefinite as well. This implies the existence

of some matrixGk ∈ Cℓ̃k×kp with full row rank such that (36) holds.
By (29) we have ker(I −F∗

k Fk) = ker(FΞ ,k). From (30) we obtain ker(FΞ ,k) ⊂
ker(S∗kFk), whence ker(I −F∗

k Fk)⊂ ker(S∗kFk).
We now prove im(Sk) ⊂ im(I − FkF∗

k ). This is equivalent to ker(I − FkF∗
k ) ⊂

ker(S∗k). Let y∈ ker(I −FkF∗
k ). Theny= FkF∗

k y. Therefore

S∗ky= S∗kFkF
∗
k y (39)

andF∗
k y=F∗

k FkF∗
k y. The latter is equivalent to(I −F∗

k Fk)F∗
k y= 0. Thereby we obtain

that F∗
k y ∈ ker(I − F∗

k Fk), which by the inclusion of nullspaces established in the
previous paragraph givesF∗

k y ∈ ker(S∗kFk). HenceS∗kFkF∗
k y = 0. From (39) we then

obtainS∗ky= 0. We conclude that ker(I −FkF∗
k )⊂ ker(S∗k), as desired.

From (36) we obtain ker(I −FkF∗
k ) = ker(Gk), so that im(I −FkF∗

k ) = im(G∗
k).

Together with the already established subspace inclusion im(Sk)⊂ im(I −FkF∗
k ), this

shows that im(Sk) ⊂ im(G∗
k). SinceGk has full row rank,GkG∗

k is invertible and
therefore

Rk := (GkG
∗
k)

−1GkSk (40)

is well-defined. We now show that it satisfies (37). Letx ∈ Cn. By the above estab-
lished subspace inclusion im(Sk) ⊂ im(G∗

k), there exists az∈ Ckp such thatSkx =
G∗

kz. Then

G∗
kRkx= G∗

k(GkG
∗
k)

−1GkSkx= G∗
k(GkG

∗
k)

−1GkG
∗
kz= G∗

kz= Skx.
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Sincex∈ Cn was arbitrary this proves thatG∗
kRk = Sk, i.e the above definedRk satis-

fies (37).
By Remark 4 we haveXk = S∗k[I +Fk(I −F∗

k Fk)
+F∗

k ]Sk. Using the above estab-
lished subspace inclusion im(Sk) ⊂ im(I −FkF∗

k ) and the fact that(I −FkF∗
k )

+(I −
FkF∗

k ) is the orthogonal projection onto im(I −FkF∗
k ) we may alternatively write this

as
Xk = S∗k[(I −FkF

∗
k )

+(I −FkF
∗
k )+Fk(I −F∗

k Fk)
+F∗

k ]Sk.

The following identity for Moore-Penrose pseudo-inversesis most easily proven by
verifying the Moore-Penrose conditions [5, Sec. 5.5.4]:

(I −FkF
∗
k )

+ = (I −FkF
∗
k )

+(I −FkF
∗
k )+Fk(I −F∗

k Fk)
+F∗

k .

From this we see that
Xk = S∗k(I −FkF

∗
k )

+Sk. (41)

On the other hand we have, using (40),

R∗
kRk = S∗kG∗

k(GkG
∗
k)

−2GkSk,

and it is easily verified thatG∗
k(GkG∗

k)
−2Gk is the Moore-Penrose pseudo-inverse of

G∗
kGk. SinceG∗

kGk = I −FkF∗
k by (36), it follows thatR∗

kRk = Xk. ⊓⊔

Remark 5 (Bounded real Lur’e equations)

a) It follows from (28) thatι∗k,p(I −FkF
∗
k)ιk,p = I −FkF∗

k .
b) Observing the lower triangular block structure of matrixFi in Alg. 1, that is

Fi =

[

[Fi−1,0]
Qi(Li ⊗ Im)+

[

0,D
]

]

, (42)

we can determine the matricesGi ∈ Cℓ̃i×ip andRi ∈ Cℓ̃i×n recursively as follows:
We have

I −FiF
∗
i

=

[

I −Fi−1F∗
i−1 −

[

Fi−1 0
](

Qi(Li ⊗ Im)
)∗

−
(

Qi(Li ⊗ Im)
)[

Fi−1 0
]∗

I −
(

Qi(Li ⊗ Im)+
[

0,D
])(

Qi(Li ⊗ Im)+
[

0,D
])∗

]

.

By making the ansatzGi =
[

Gi−1 G12,i
0 G22,i

]

, we obtain

[

G∗
i−1Gi−1 G∗

i−1G12,i

G∗
12,iGi−1 G∗

12,iG12,i +G∗
22,iG22,i

]

= G∗
i Gi = I −FiF

∗
i

=

[

I −Fi−1F∗
i−1 −

[

Fi−1 0
](

Qi(Li ⊗ Im)
)∗

−
(

Qi(Li ⊗ Im)
)[

Fi−1 0
]∗

I −
(

Qi(Li ⊗ Im)+
[

0,D
])(

Qi(Li ⊗ Im)+
[

0,D
])∗

]

.

Thus, the matrixG12,i is the unique solution of the linear equation

G∗
i−1G12,i =−

[

Fi−1 0
](

Qi(Li ⊗ Im)
)∗
.
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Thereafter, the matrixG22,i can be obtained by a factorization

G∗
22,iG22,i = I −

(

Qi(Li ⊗ Im)+
[

0,D
])(

Qi(Li ⊗ Im)+
[

0,D
])∗−G∗

12,iG12,i.

Since, by Alg. 1,Si is obtained fromSi−1 by

Si =

[

Si−1
√

2Re(αi) ·V∗
i

]

, (43)

we can, by making the ansatzRi =
[

Ri−1
R2,i

]

, rewrite equation (37) as

[

G∗
i−1 0

G∗
12,i G∗

22,i

][

Ri−1

R2,i

]

=

[

Si−1
√

2Re(αi) ·V∗
i

]

.

Hence,R2,i is the solution of the linear equation

G∗
22,iR2,i =

√

2Re(αi) ·V∗
i −G∗

12,iRi−1.

By Theorem 5 and Remark 5 b), we can set up the following algorithm for the
determination of the minimal solution of bounded real Lur’eequations.

Algorithm 2 ADI iteration for the bounded real Lur’e equation.
Input: a stable matrixA∈ Cn×n, andB∈ Cn×m, C ∈ Cp×n, D ∈ Cp×m such that the bounded real Lur’e
equation (1) has the minimal solutionX ∈ Cn×n, and shift parametersα1, . . . ,αk ∈ C with Re(αi)> 0.
Output: Rk ∈ Cℓ̃k×n such thatR∗

kRk = Xk ≈ X.

1: Perform steps 1–5 in Alg. 1
2: Determine a matrixG1 with full row rank andG∗

1G1 = I −F1F∗
1

3: Determine a matrixR1 with G∗
1R1 = S1

4: for i = 2,3, . . . ,k do
5: Perform steps 7–14 in Alg. 1.
6: Determine a matrixG12,i with G∗

i−1G12,i =−
[

Fi−1 0
](

Qi(Li ⊗ Im)
)∗

7: Determine a matrixG22,i with full row rank and
G∗

22,iG22,i = I −
(

Qi(Li ⊗ Im)+
[

0,D
])(

Qi(Li ⊗ Im)+
[

0,D
])∗−G∗

12,iG12,i

8: Gi =

[

Gi−1 G12,i
0 G22,i

]

9: Determine a matrixR2,i with G∗
22,iR2,i =

√

2Re(αi) ·V∗
i −G∗

12,iRi−1

10: Ri =

[

Ri−1
R2,i

]

11: end for

Remark 6If A∈ Cn×n is stable,B= 0∈ Cn×m, C ∈ Cp×n andD = 0∈ Cp×m, then
the bounded real Lur’e equations reduce to the Lyapunov equation

A∗X+XA+C∗C= 0.

In this case, the matrices in Alg. 2 readFi = 0,Gi = I andSi =Ri . Then Alg. 2 reduces
to the well-known and established ADI iteration for Lyapunov equations [7,9,21].



The ADI method for bounded real and positive real Lur’e equations 17

Now we consider positive real Lur’e equations. First we present a version of
Theorem 3 for positive real systems. The proof can be done by adapting the lines
of the proof of Theorem 3. Again, it may help to compare the following result with
Theorem 1 specialized toR= Q= Im andS= 0.

Theorem 6 Assume that A∈ Cn×n is stable, B∈ Cn×m, C∈ Cm×n and D∈ Cm×m.
Further assume that the positive real Lur’e equation(8) has a minimal solution X∈
Cn×n.
DefineΨ andF by(10)and(11). Let(α j )

∞
j=1 be a complex sequence withRe(α j )> 0

for all j ∈ N, and let Fk ∈Ckp×km, Sk ∈Ckp×n be defined as in(27).
Then the matrix F∗k +Fk ∈ Ckm×km is positive semidefinite. In particular, there exists
some FΞ ,k ∈ Cℓk×km with full row rank and

F∗
k +Fk = F∗

Ξ ,kFΞ ,k. (44)

Further, there exists some SΞ ,k ∈Cℓk×n such that

F∗
Ξ ,kSΞ ,k = Sk. (45)

For the orthogonal projector Pk,m as in(26), the matrix Xk defined by

Xk = S∗Ξ ,kSΞ ,k. (46)

fulfills,

x∗0Xkx0 = sup
u∈L2(0,∞;Cm)

−2Re〈u,Pk,mFu+Pk,mΨx0〉 ∀x0 ∈ C
n. (47)

Again, we can formulate a convergence result. The proof is analogous to that of
Theorem 4 and therefore omitted.

Theorem 7 Assume that A∈ Cn×n is stable, B∈ Cn×m, C∈ Cm×n and D∈ Cm×m.
Further assume that the positive real Lur’e equation(8) has a minimal solution X∈
Cn×n. DefineΨ andF by (10)and (11).
Let (α j )

∞
j=1 be a complex sequence withRe(α j ) > 0 for all j ∈ N, and let Fk ∈

Ckp×km, Sk ∈ Ckp×n be defined as in(27); let Xk be defined as in Theorem 6.
Then

Xk ≤ Xk+1, Xk ≤ X ∀k∈ N,

and the sequence(Xk) converges. If, additionally,(α j )
∞
j=1 satisfies the non-Blaschke

condition(7), then(Xk) converges to X.

Remark 7 (Positive real Lur’e equations and projected optimal control problems)
In the following we show that, by using the fact that the matrix Fi has the lower
triangular block structure as in (42), the matricesFΞ ,i ∈ Cℓi×im andSΞ ,i ∈ Cℓi×n can
be recursively determined (cf. Remark 5 b):
We have

Fi +F∗
i =

[

Fi−1+F∗
i−1 [ I(i−1)m 0] (Qi(Li ⊗ Im))∗

(Qi(Li ⊗ Im))
[

I(i−1)m
0

]

D+D∗+[0 Im ] (Qi(Li ⊗ Im))∗+(Qi(Li ⊗ Im))
[

0
Im

]

]

.
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By making the ansatzFΞ ,i =
[

FΞ ,i−1 FΞ12,i
0 FΞ22,i

]

, we obtain

[

F∗
Ξ ,i−1FΞ ,i−1 F∗

Ξ ,i−1FΞ12,i

F∗
Ξ12,iFΞ ,i−1 F∗

Ξ12,iFΞ12,i +F∗
Ξ22,iFΞ22,i

]

= F∗
Ξ ,iFΞ ,i = Fi +F∗

i

=

[

Fi−1+F∗
i−1 [ I(i−1)m 0] (Qi(Li ⊗ Im))∗

(Qi(Li ⊗ Im))
[

I(i−1)m
0

]

D+D∗+[0 Im ] (Qi(Li ⊗ Im))∗+(Qi(Li ⊗ Im))
[

0
Im

]

]

.

Thus, the matrixFΞ12,i is the unique solution of the linear equation

F∗
Ξ ,i−1FΞ12,i =

[

I(i−1)m 0
]

(Qi(Li ⊗ Im))
∗.

Thereafter, the matrixFΞ22,i can be obtained by a factorization

F∗
Ξ22,iFΞ22,i = D+D∗+[0 Im ] (Qi(Li ⊗ Im))

∗+(Qi(Li ⊗ Im))
[

0
Im

]

−F∗
Ξ12,iFΞ12,i.

Since, by Alg. 1, the matricesSi andSi−1 are related by (43) we see, by making the

ansatzSΞ ,i =
[

SΞ ,i−1
SΞ2,i

]

, that equation (45) now reads

[

F∗
Ξ ,i−1 0

F∗
Ξ12,i F∗

Ξ22,i

][

SΞ ,i−1

SΞ2,i

]

=

[

Si−1
√

2Re(αi) ·V∗
i

]

.

Hence,SΞ2,i is the solution of the linear equation

F∗
Ξ22,iSΞ2,i =

√

2Re(αi) ·V∗
i −F∗

Ξ12,iSΞ ,i−1.

Algorithm 3 ADI iteration for the positive real Lur’e equation.
Input: A∈Cn×n a stable matrix,B∈Cn×m, C∈Cp×n, D ∈Cp×m such that the positive real Lur’e equation
(8) has the minimal solutionX ∈ Cn×n, and shift parametersα1, . . . ,αk ∈ C with Re(αi)> 0.
Output: SΞ ,k ∈ Cℓk×n such thatS∗Ξ ,kSΞ ,k = Xk ≈ X.

1: Perform steps 1–5 in Alg. 1
2: Determine a matrixFΞ ,1 with full row rank andF∗

Ξ ,1FΞ ,1 = F1+F∗
1

3: Determine a matrixSΞ ,1 with F∗
Ξ ,1SΞ ,1 = S1

4: for i = 2,3, . . . ,k do
5: Perform steps 7–14 in Alg. 1.
6: Determine a matrixFΞ12,i with F∗

Ξ ,i−1FΞ12,i = [ I(i−1)m 0] (Qi(Li ⊗ Im))∗

7: Determine a matrixFΞ22,i with full row rank and
F∗

Ξ22,iFΞ22,i = D+D∗+[0 Im ](Qi(Li ⊗ Im))∗+(Qi(Li ⊗ Im))
[

0
Im

]

−F∗
Ξ12,iFΞ12,i

8: FΞ ,i =

[

FΞ ,i−1 FΞ12,i
0 FΞ22,i

]

9: Determine a matrixSΞ2,i with F∗
Ξ22,iSΞ2,i =

√

2Re(αi) ·Vi −F∗
Ξ12,iSΞ ,i−1

10: SΞ ,i =

[

SΞ ,i−1
SΞ2,i

]

11: end for
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Remark 8We note that Alg. 2 reduces to well-known ADI iteration for Lyapunov
equations [7, 9, 21] (cf. Remark 6): IfA∈ Cn×n is stable,B= 0 ∈ Cn×m, C ∈ Cm×n

andD = 1
2Im ∈ Cm×m, then the positive real Lur’e equation reduces to the Lyapunov

equation
A∗X+XA+C∗C= 0.

The matrices in Alg. 3 then readFi = 0, FΞ ,i =
1
2I andSΞ ,i = Si , whence Alg. 2 then

again reduces to ADI iteration for Lyapunov equations.

Remark 9 (Numerical effort for ADI iteration)

a) At this point we would like to address the computational cost in Alg. 2 and Alg. 3:
As in ADI iteration for Lyapunov equations [7, 9, 21], our algorithms for Lur’e
equations require two properties:

(i) The numerical rank ofX is small. That is,X has only few eigenvalues which
exceed a small numberε > 0.

(ii) The output dimension is small (i.e.,p≪ n).
Property (i) guarantees thatX can be well approximated by a productR∗

kRk for
someRk ∈ Cℓk×n with ℓk ≪ n (note thatp = m in the positive real case). This
enables that ADI iteration gives a good approximation afteronly a few steps. If
Property (ii) is fulfilled, then the numerical effort for allsteps in Alg. 2 and Alg. 3,
except for the computation of the matrixVi =Vi−1−(αi +αi−1)·(αi I −A∗)−1Vi−1,
are relatively negligible. The computation ofVi requires the solution ofp linear
systems withn degrees of freedom. In particular, possible sparsity ofA can be
exploited as in ADI iteration for Lyapunov equations [2,13].

b) Our algorithm is of a totally different nature than the onepresented in [15], which
is based on a determination of theE -neutral deflating space corresponding to
the infinite eigenvalues of the even matrix pencilsE −A as in (22). That is,
the approach in [15] relies on a determination of a matrix sequence(Vi) with
imV0 = kerE , imEVi+1 = imA Vi andV∗

i+1EVi+1 = 0. This sequence is shown to
be stagnating. Thereafter, a projectorΠ ∈ Cn×n is determined from the matrices
Vi. The minimal solutionX of the Lur’e equations is decomposed as

X = Π ∗XΠ +(I −Π)∗XΠ +Π ∗X(I −Π)+ (I −Π)∗X(I −Π).

The matrixX(I −Π) can be directly computed from the matricesVi. The remain-
ing expression(I −Π)∗X(I −Π) is shown to be the stabilizing solution of a cer-
tain projected Riccati equation, which is thereafter solved by Newton-Kleinman
iteration. The bottleneck is indeed the determination of the matricesVi, which
requires in turn a successive computation of nullspaces. This may be a numer-
ically ill-posed problem, if matrices (whose nullspaces have to be determined)
with small singular values occur. We note that the algorithms in this article are
working with the “original coordinates” and do not require any nullspace compu-
tations.

c) The choice of the shift parameters has a tremendous influence on the speed of
convergence of ADI. By Remark 2 c), it might be reasonable to choose the shift
parameters according to the generalized eigenvalues of theeven matrix pencil
(22). Selection of (sub-)optimal shift parameters howeverremains to be an open
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problem. Furthermore, adaptive shift parameter selectionmethods, such as those
in [1,20] for Lyapunov equations, are worthwhile to investigate for our algorithms.

5 Numerical Example

We present a numerical example to show the applicability of our algorithm and to
demonstrate the expected performance of the ADI iteration for the positive real Lur’e
equation in terms of monotonicity and convergence behavior. All the calculations
were done using MATLAB 8.5 (R2015a) on a 64-bit server with 24CPU cores of
type Intel Xeon X5650 at 2.67GHz and 48 GB main memory available.

We consider a convection-diffusionequation on the unit squareΩ := [0,1]× [0,1],
namely

∂x
∂ t (ξ , t) = k∆x(ξ , t)+b⊤∇x(ξ , t), (ξ , t) ∈ Ω ×R≥0. (48)

The input is a scalar function formed by the Robin boundary condition

u(t) = ν(ξ )⊤∇x(ξ , t)+αx(ξ , t), (ξ , t) ∈ ∂Ω ×R≥0,

and the output consists of the integral of Dirichlet boundary values, i.e.

y(t) =
∫

∂Ω
x(ξ , t)dσξ ,

where∂Ω denotes the boundary ofΩ , σξ denotes the surface measure, andν(ξ )
denotes the outward unit normal.

To discretize the PDE (48), we apply a finite element discretization with uniform
triangular elements of fixed sizeh = 1

N−1, whereN ∈ N is the number of points in
each coordinate direction. An example of the grid (forN = 6) that we used in our
computations is shown in Fig. 1. In addition, we define the subspaceVh ⊂ H1(Ω)
using piecewise-linear basis functions. As a result, we obtain a finite dimensional
dynamical system

Eẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t)
(49)

with state space dimensionn= N2. E ∈ Rn×n is a symmetric positive definite mass
matrix,A∈ Rn×n is a non-symmetric stiffness matrix,B∈ Rn×1 is the input matrix,
andC∈ R1×n is the output matrix.

Fig. 1 An example of the chosen triangular element forN = 6
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Fig. 2 Comparison of different shift parameters
for ADI iteration: convection-diffusion equation
with n= 4900,b⊤ = [10 10], k= 0.45, andα = 3
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Fig. 3 Monotonicity of ADI iteration: convection-
diffusion equation withn = 4900,b⊤ = [10 10],
k= 0.45, andα = 3

The system is asymptotically stable and the matrixA+A∗ is negative definite.
Furthermore, we haveB = k ·C∗. A simple calculation then shows that the system
is passive. SinceD = 0, the corresponding positive real Lur’e equations cannot be
turned into an algebraic Riccati equation.

We considerN = 70 (n= N2 = 4900),b=
[

10
10

]

, k= 0.45, and setα = 3. We find
an approximate solutionX ∈Cn×n of the positive real Lur’e equation (8) by applying
Alg. 3. Thereby, we use the modifications proposed in [10, Remark 7.1] & [8, Re-
mark 3.3] which allow computations without explicit inversion of E. In addition, in
steps 6 and 7 of Alg. 3, we do not need to compute the expressionQi(Li ⊗ Im), be-
cause we compute it once in step 14 of Alg. 1. In fact, we need tojust access the last
p rows of the matrixFi in order to obtain the value of this expression (cf. Remark 7).

The choice of shift parameters has a major effect on the convergence speed of the
ADI algorithm. In our example, we choose the following two different sets of shift
parameters.

1. As a first set of shift parameters, we generate 30 parameters using the Wachs-
press method [21] on the basis of 4900 eigenvalues of the Dirichlet Laplacian
given byπ2(i2 + j2), i, j = 1,2, . . . ,70. To obtain a smooth convergence of the
ADI method, we sort these shift parameters in an increasing order with respect to
the values of their real part. We use the obtained shift parameters in the first 30
iterations. Afterwards, we select a subset of these parameters which provided the
highest reduction in the value of residual norm. In our case,we choose 13 shift
parameters and re-use them every 13 iterations. The computation time of these
shift parameters for state space dimensionn= 4900 is about 0.0025 seconds.

2. The second set of shift parameters is motivated by the statements in Remark 2 c).
Specifically, we generate a set of 30 shift parameters using Penzl’s heuristic pro-
cedure [13] on negatives of the stable eigenvalues of the even matrix pencil (22)
with Q = R= 0 andS= Im. In order to approximate the spectrum of this even
matrix pencil, we calculate 450 Ritz values using the shift-and-invert Arnoldi
process [19] with the shiftσ = 1. The Arnoldi process is initialized with a ran-
dom vector inRn. The computation time of these shift parameters for state space
dimensionn= 4900 is about 80 seconds.
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for ADI iteration: convection-diffusion equation
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Fig. 5 Monotonicity of ADI iteration: convection-
diffusion equation withn = 4900,b⊤ = [45 45],
k= 0.45, andα = 3

We sort the obtained 30 parameters in an increasing order with respect to the
values of their real part in order to obtain a smooth convergence. We perform 30
iterations of Alg. 3 using these shift parameters. Subsequently, we extract a subset
of these parameters which provided the highest reduction inthe value of residual
norm. From this set of shift parameters, we extract 10 parameters to re-use every
10 iterations.

We add a large real shift parameter of order 1012 to the above two sets of shift
parameters and consider it to be the first parameter in the set. We use this large shift
parameter just in the first iteration of Alg. 3 and do not repeat it in the further itera-
tions. The reason for adding a very big shift parameter can beexplained as follows.
Since in the positive real case the Popov function has a zero at infinity, a delta im-
pulse will occur in the optimal control. The Takenaka-Malmquist basis function cor-
responding to a big shift parameter should suitably approximate the behavior of this
delta impulse.

At each iterationi, we observe the relative residual norm of the positive real Lur’e
equation using the approach proposed in [15, Sec. 6]. Fig. 2 shows the relative resid-
ual norm with respect to the iteration for the space dimension n= 4900 and for the
two different choices of shift parameters which we have introduced earlier. We can
conclude from this figure that the second set of shift parameters provides a faster con-
vergence to the solution of positive real Lur’e equation corresponding to the system
(49). In fact, with a tolerance of 10−13 on the relative residual norm for the problem
with the space dimensionn = 4900, the second choice of shift parameters leads to
convergence in 51 iterations whereas the first set of parameters requires more than
80 iterations for the desired convergence.

In order to illustrate the monotonicity of the ADI iteration, we observe the trace of
Xi , denoted by trace(Xi), at each iteration of Alg. 3. The trace ofXi can be computed
efficiently as

trace(Xi) = trace
(

S∗Ξ ,iSΞ ,i
)

= ‖SΞ ,i‖2
F ,

where‖ · ‖F denotes the Frobenius norm. Fig. 3 shows the trace of solutionsXi gener-
ated by Alg. 3 with the two sets of shift parameters introduced earlier in this example.
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From this figure we observe that trace(Xi)≤ trace(Xi+1), for all i ∈ N, which is con-
sistent with Theorem 7.

The execution time of the ADI algorithm for this example (including the compu-
tation of relative residual norm and trace of the solution ateach iteration) is about
257 seconds for 100 iterations for the first choice of shift parameters and about 470
seconds for 100 iterations for the second choice of shift parameters.

We finish our numerical example by showing the effect of increasing the con-
vection term on the convergence of the ADI algorithm. To thisend, we increase the
convection coefficients tob=

[

45
45

]

and keep the other parameters unchanged. In this
case, the spectrum of the associated even matrix pencil getsmore complicated. As a
result, the selection of shift parameters becomes a more delicate task. We recompute
the two sets of shift parameters in exactly the same way as forthe caseb=

[

10
10

]

. The
computation time for the first set of shift parameters is about 0.13 seconds and for the
second set of shift parameters is about 78 seconds.

Fig. 4 shows that the first set of shift parameters fails to provide a fast conver-
gence when the problem is convection dominated. The second choice of shift param-
eters still provides a convenient convergence, but the speed of convergence is rather
slower compared to Fig. 2. The trace ofXi for both sets of shift parameters is depicted
in Fig. 5. The execution time of the ADI algorithm in this case(including the com-
putation of relative residual norm and trace of the solutionat each iteration) is about
240 seconds for 100 iterations for the first choice of shift parameters and about 443
seconds for 100 iterations for the second choice of shift parameters.

6 Conclusions

We have introduced new numerical methods for the solutions of bounded real and
positive real Lur’e equations. Thereby, only solvability of these equations together
with stability of the underlying system have been assumed. Our methods generalize
the well-known ADI iteration for Lyapunov equations and provide low-rank factors
of the solution. Each iteration step basically consists of the solution of a linear sys-
tem (αi I −A∗)x = b, whereαi ∈ C is a so-calledshift parameter. This enables the
application of our algorithms to large-scale systems.
The theoretical basis for our convergence analysis is the fact that solutions of the
Lur’e equations express theavailable storageof a system, which is a particular linear-
quadratic optimal control problem. The matrices obtained by iteration are shown to
correspond to a certain projected optimal control problem,where the projections are
determined by the shift parameters. This gives rise to a simple sufficient criterion on
the shift parameters for convergence of our method.
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