19 research outputs found

    Fibrogenic Secretome of Sirtuin 1-Deficient Endothelial Cells: Wnt, Notch and Glycocalyx Rheostat

    Get PDF
    Sirtuins (SIRT) are ubiquitous histone and protein deacetylases and a member of this family, SIRT1, is the best-studied one. Its functions in endothelial cells encompass branching angiogenesis, activation of endothelial nitric oxide synthase, regulation of proapoptotic and proinflammatory pathways, among others. Defective SIRT1 activity has been described in various cardiovascular, renal diseases and in aging-associated conditions. Therefore, understanding of SIRT1-deficient, endothelial dysfunctional phenotype has much to offer clinically. Here, we summarize recent studies by several investigative teams of the characteristics of models of global endothelial SIRT1 deficiency, the causes of facilitative development of fibrosis in these conditions, dissect the protein composition of the aberrant secretome of SIRT1-deficient endothelial cells and present several components of this aberrant secretome that are involved in fibrogenesis via activation of fibroblasts to myofibroblasts. These include ligands of Wnt and Notch pathways, as well as proteolytic fragments of glycocalyx core protein, syndecan-4. The latter finding is crucial for understanding the degradation of glycocalyx that accompanies SIRT1 deficiency. This spectrum of abnormalities associated with SIRT1 deficiency in endothelial cells is essential for understanding the origins and features of endothelial dysfunction in a host of cardiovascular and renal diseases

    Fibrogenic Secretome of Sirtuin 1-Deficient Endothelial Cells: Wnt, Notch and Glycocalyx Rheostat

    Get PDF
    Sirtuins (SIRT) are ubiquitous histone and protein deacetylases and a member of this family, SIRT1, is the best-studied one. Its functions in endothelial cells encompass branching angiogenesis, activation of endothelial nitric oxide synthase, regulation of proapoptotic and proinflammatory pathways, among others. Defective SIRT1 activity has been described in various cardiovascular, renal diseases and in aging-associated conditions. Therefore, understanding of SIRT1-deficient, endothelial dysfunctional phenotype has much to offer clinically. Here, we summarize recent studies by several investigative teams of the characteristics of models of global endothelial SIRT1 deficiency, the causes of facilitative development of fibrosis in these conditions, dissect the protein composition of the aberrant secretome of SIRT1-deficient endothelial cells and present several components of this aberrant secretome that are involved in fibrogenesis via activation of fibroblasts to myofibroblasts. These include ligands of Wnt and Notch pathways, as well as proteolytic fragments of glycocalyx core protein, syndecan-4. The latter finding is crucial for understanding the degradation of glycocalyx that accompanies SIRT1 deficiency. This spectrum of abnormalities associated with SIRT1 deficiency in endothelial cells is essential for understanding the origins and features of endothelial dysfunction in a host of cardiovascular and renal diseases

    HMGB1 Redox During Sepsis

    Get PDF
    During sepsis, the alarmin HMGB1 is released from tissues and promotes systemic inflammation that results in multi-organ damage, with the kidney particularly susceptible to injury. The severity of inflammation and pro-damage signaling mediated by HMGB1 appears to be dependent on the alarmin\u27s redox state. Therefore, we examined HMGB1 redox in kidney cells during sepsis. Using intravital microscopy, CellROX labeling of kidneys in live mice indicated increased ROS generation in the kidney perivascular endothelium and tubules during lipopolysaccharide (LPS)-induced sepsis. Subsequent CellROX and MitoSOX labeling of LPS-stressed endothelial and kidney proximal tubule cells demonstrated increased ROS generation in these cells as sepsis worsens. Consequently, HMGB1 oxidation increased in the cytoplasm of kidney cells during its translocation from the nucleus to the circulation, with the degree of oxidation dependent on the severity of sepsis, as measured in in vivo mouse samples using a thiol assay and mass spectrometry (LC-MS/MS). The greater the oxidation of HMGB1, the greater the ability of the alarmin to stimulate pro-inflammatory cyto-/chemokine release (measured by Luminex Multiplex) and alter mitochondrial ATP generation (Luminescent ATP Detection Assay). Administration of glutathione and thioredoxin inhibitors to cell cultures enhanced HMGB1 oxidation during sepsis in endothelial and proximal tubule cells, respectively. In conclusion, as sepsis worsens, ROS generation and HMGB1 oxidation increases in kidney cells, which enhances HMGB1\u27s pro-inflammatory signaling. Conversely, the glutathione and thioredoxin systems work to maintain the protein in its reduced state

    Go Shush Yourself: Student Habitus at the New Thompson Library

    Get PDF
    Poster with the results of a collaborative ethnographic study of students' behavior in a university library. The study was conducted within the framework of the anthropology course 650H: Research Design and Ethnographic Methods (Autumn 2010) taught by Dr. Mark Morit

    Sirtuin 1 and Endothelial Glycocalyx

    No full text
    Sirtuin1 deficiency or reduced activity comprises one of the hallmarks of diseases as diverse as chronic cardiovascular, renal, and metabolic, some malignancies, and infections, as well as aging-associated diseases. In a mouse model of endothelium-limited defect in sirtuin 1 deacetylase activity, we found a dramatic reduction in the volume of endothelial glycocalyx. This was associated with the surge in the levels of one of key scaffolding heparan sulfate proteoglycans of endothelial glycocalyx, syndecan-4, and specifically, its extracellular domain (ectodomain). We found that the defect in endothelial sirtuin 1 deacetylase activity is associated with (a) elevated basal and stimulated levels of superoxide generation (via the FoxO1 over-acetylation mechanism) and (b) increased nuclear translocation of NF-kB (via p65 over-acetylation mechanism). These findings laid the foundation for the proposed novel function of sirtuin 1, namely, the maintenance of endothelial glycocalyx, particularly manifest in conditions associated with sirtuin 1 depletion. In the forthcoming review, we summarize the emerging conceptual framework of the enhanced glycocalyx degradation in the states of defective endothelial sirtuin 1 function, thus explaining a broad footprint of the syndrome of endothelial dysfunction, from impaired flow-induced nitric oxide production, deterrent leukocytes infiltration, increased endothelial permeability, coagulation, and pro-inflammatory changes to development of microvascular rarefaction and progression of an underlying disease

    The Third Path of Tubulointerstitial Fibrosis: Aberrant Endothelial Secretome

    No full text
    The secretome, defined as a portion of proteins secreted by specific cells to the extracellular space, secures a proper microenvironmental niche not only for the donor cells, but also for the neighboring cells, thus maintaining tissue homeostasis. Communication via secretory products exists between endothelial cells and fibroblasts, and this local mechanism maintains the viability and density of each compartment. Endothelial dysfunction, apart from obvious cell-autonomous defects, leads to the aberrant secretome, which predisposes fibroblasts to acquire a myofibroblastic fibrogenic phenotype. In our recent profiling of the secretome of such dysfunctional profibrogenic renal microvascular endothelial cells, we identified unique profibrogenic signatures, among which we detected ligands of Notch and Wnt-beta-catenin pathways. Here, we stress the role of reprogramming cues in the immediate microenvironment of (myo)fibroblasts and the contribution of the endothelial secretome to the panoply of instructive signals in the vicinity of fibroblasts. We hope that this brief overview of endothelial-fibroblast communication in health and disease will lead to eventual unbiased proteomic mapping of individual secretomes of glomerular and tubular epithelial cells, pericytes, and podocytes through reductionist approaches to allow for the synthetic creation of a complex network of secretomic signals acting as reprogramming factors on individual cell types in the kidney. Knowledge of profibrogenic and antifibrogenic signatures in the secretome may garner future therapeutic efforts

    Endothelial Cell Dysfunction and Glycocalyx - A Vicious Circle

    No full text
    Dysfunctional endothelial cells are an essential contributor to the progression of diverse chronic cardiovascular, renal, and metabolic diseases. It manifests in impairment of nitric oxide-dependent vasorelaxation, vascular permeability, and leukocytes deterrent. While endothelial glycocalyx is known to regulate these functions, glycocalyx has been shown to be impaired in pathologic settings leading to endothelial dysfunction. Are these findings coincidental or are they indicative of a potential cooperation of the glycocalyx and the endothelium in inducing a dysfunctional phenotype? The main thrust of this overview is to advance a hypothesis on the existence of vicious circle relations between impaired endothelial glycocalyx and endothelial cell dysfunction. We briefly introduce physiology and pathology of blood flow-induced components of mechanotransduction in endothelial cells, as this function is dependent on glycocalyx and is critically involved in the development of endothelial dysfunction. Next, we present a series of experimental findings and arguments favoring the view on the impairment of mechanotransduction in dysfunctional endothelia. We advance the concept of feedback reinforcement between perturbed endothelial glycocalyx and progression of endothelial dysfunction and sketch therapeutic approaches to restore them. Among those we introduce our recently designed liposomal nanocarriers of preassembled glycocalyx and present evidence of their ability to expeditiously restore endothelial mechanotransduction

    Endothelial Dysfunction is a Superinducer of Syndecan-4: Fibrogenic Role of its Ectodomain

    No full text
    Syndecan-4 (Synd4) is a member of the membrane-spanning, glycocalyx-forming proteoglycan family. It has been suggested that Synd4 participates in renal fibrosis. We compared wild-type and fibrosis-prone endothelial sirtuin 1-deficient (Sirt1(endo-/-)) mice, the latter being a model of global endothelial dysfunction. We performed mass spectrometry analysis, which revealed that Synd4 was highly enriched in the secretome of renal microvascular endothelial cells obtained from Sirt1(endo-/-) mice upon stimulation with transforming growth factor-beta1; notably, all detectable peptides were confined to the ectodomain of Synd4. Elevated Synd4 was due to enhanced NF-kappaB signaling in Sirt1(endo-/-) mice, while its shedding occurred as a result of oxidative stress in Sirt1 deficiency. Synd4 expression was significantly enhanced after unilateral ureteral obstruction compared with contralateral kidneys. Furthermore, hyperplasia of renal myofibroblasts accompanied by microvascular rarefaction and overexpression of Synd4 were detected in Sirt1(endo-/-) mice. The ectodomain of Synd4 acted as a chemoattractant for monocytes with higher levels of macrophages and higher expression levels of Synd4 in the extracellular matrix of Sirt1(endo-/-) mice. In vitro, ectodomain application resulted in generation of myofibroblasts from cultured renal fibroblasts, while in vivo, subcapsular injection of ectodomain increased interstitial fibrosis. Moreover, the endothelial glycocalyx was reduced in Sirt1(endo-/-) mice, highlighting the induction of Synd4 occurring in parallel with the depletion of its intact form and accumulation of its ectodomain in Sirt1(endo-/-) mice. On the basis of our experimental results, we propose that it is the Synd4 ectodomain per se that is partially responsible for fibrosis in unilateral ureteral obstruction, especially when it is combined with endothelial dysfunction. NEW & NOTEWORTHY Our findings suggest that endothelial dysfunction induces the expression of syndecan-4 via activation of the NF-kappaB pathway. Furthermore, we show that syndecan-4 is shed to a greater amount because of increased oxidative stress in dysfunctional endothelial cells and that the release of the syndecan-4 ectodomain leads to tubulointerstitial fibrosis

    Endothelial Glycocalyx--The Battleground for Complications of Sepsis and Kidney Injury

    No full text
    After briefly discussing endothelial glycocalyx and its role in vascular physiology and renal disease, this overview focuses on its degradation very early in the course of microbial sepsis. We describe our recently proposed mechanism for glycocalyx degradation induced by exocytosis of lysosome-related organelles and release of their cargo. Notably, an intermediate in nitric oxide synthesis, NG-hydroxy-l-arginine, shows efficacy in curtailing exocytosis of these organelles and improvement in animal survival. These data not only depict a novel mechanism responsible for very early glycocalyx degradation, but may also outline a potential preventive therapy. The second issue discussed in this article is related to the therapeutic acceleration of restoration of already degraded endothelial glycocalyx. Here, using as an example our recent findings obtained with sulodexide, we illustrate the importance of the expedited repair of degraded endothelial glycocalyx for the survival of animals with severe sepsis. These two focal points of the review on glycocalyx may not only have broader disease applicability, but they may also provide additional evidence to buttress the idea of the importance of endothelial glycocalyx and its maintenance and repair in the prevention and treatment of an array of renal and nonrenal diseases

    Eligibility for Baroreflex Activation Therapy and medication adherence in patients with apparently resistant hypertension

    No full text
    Abstract Uncontrolled hypertension is a main risk factor for cardiovascular morbidity. Baroreflex activation therapy (BAT) is an effective therapy option addressing true resistant hypertension. We evaluated patients’ eligibility for BAT in a staged assessment as well as adherence to antihypertensive drug therapy. Therefore, we analyzed files of 345 patients, attending the hypertension clinic at University Medicine Göttingen. Additionally, gas chromatographic‐mass spectrometric urine analyses of selected individuals were performed evaluating their adherence. Most common cause for a revoked BAT recommendation was blood pressure (BP) control by drug adjustment (54.2%). Second leading cause was presence of secondary hypertension (31.6%). Patients to whom BAT was recommended (59 (17.1%)) were significantly more often male (67.8% vs. 43.3%, P = .0063), had a higher body mass index (31.8 ± 5.8 vs. 30.0 ± 5.7 kg/mÂČ, P = .0436), a higher systolic office (168.7 ± 24.7 vs. 147.7 ± 24.1 mmHg, P < .0001), and 24h ambulatory BP (155.0 ± 14.6 vs. 144.4 ± 16.8 mmHg, P = .0031), took more antihypertensive drugs (5.8 ± 1.3 vs. 4.4 ± 1.4, P < .0001), and suffered more often from numerous concomitant diseases. Eventually, 27 (7.8%) received a BAT system. In the toxicological analysis of 75 patients, mean adherence was 75.1%. 16 patients (21.3%) showed non‐adherence. Thus, only a small number of patients eventually received a BAT system, as treatable reasons for apparently resistant hypertension could be identified frequently. This study is—to our knowledge—the first report of a staged assessment of patients’ suitability for BAT and underlines the need for a careful examination and indication. Non‐adherence was proven to be a relevant issue concerning apparently resistant hypertension and therefore non‐eligibility for interventional antihypertensive therapy
    corecore