1,870 research outputs found

    Configuration control of seven-degree-of-freedom arms

    Get PDF
    A seven degree of freedom robot arm with a six degree of freedom end effector is controlled by a processor employing a 6 by 7 Jacobian matrix for defining location and orientation of the end effector in terms of the rotation angles of the joints, a 1 (or more) by 7 Jacobian matrix for defining 1 (or more) user specified kinematic functions constraining location or movement of selected portions of the arm in terms of the joint angles, the processor combining the two Jacobian matrices to produce an augmented 7 (or more) by 7 Jacobian matrix, the processor effecting control by computing in accordance with forward kinematics from the augmented 7 by 7 Jacobian matrix and from the seven joint angles of the arm a set of seven desired joint angles for transmittal to the joint servo loops of the arm. One of the kinematic functions constraints the orientation of the elbow plane of the arm. Another one of the kinematic functions minimizes a sum of gravitational torques on the joints. Still another kinematic function constrains the location of the arm to perform collision avoidance. Generically, one kinematic function minimizes a sum of selected mechanical parameters of at least some of the joints associated with weighting coefficients which may be changed during arm movement. The mechanical parameters may be velocity errors or gravity torques associated with individual joints

    Imaging cell lineage with a synthetic digital recording system

    Get PDF
    Cell lineage plays a pivotal role in cell fate determination. Chow et al. demonstrate the use of an integrase-based synthetic barcode system called intMEMOIR, which uses the serine integrase Bxb1 to perform irreversible nucleotide edits. Inducible editing either deletes or inverts its target region, thus encoding information in three-state memory elements, or trits, and avoiding undesired recombination events. Using intMEMOIR combined with single-molecule fluorescence in situ hybridization, the authors were able to identify clonal structures as well as gene expression patterns in the fly brain, enabling both clonal analysis and expression profiling with intact spatial information. The ability to visualize cell lineage relationships directly within their native tissue context provides insights into development and disease

    Comparison of ecosystem processes in a woodland and prairie pond with different hydroperiods

    Get PDF
    Shallow lakes and ponds constitute a significant number of water bodies worldwide. Many are heterotrophic, indicating that they are likely net contributors to global carbon cycling. Climate change is likely to have important impacts on these waterbodies. In this study, we examined two small Minnesota ponds; a permanent woodland pond and a temporary prairie pond. The woodland pond had lower levels of phosphorus and phytoplankton than the prairie pond. Using the open water oxygen method, we found the prairie pond typically had a higher level of gross primary production (GPP) and respiration (R) than the woodland pond, although the differences between the ponds varied with season. Despite the differences in GPP and R between the ponds the net ecosystem production was similar with both being heterotrophic. Since abundant small ponds may play an important role in carbon cycling and are likely to undergo changes in temperature and hydroperiod associated with climate change, understanding pond metabolism is critical in predicting impacts and designing management schemes to mitigate changes

    Valley Splitting Theory of SiGe/Si/SiGe Quantum Wells

    Full text link
    We present an effective mass theory for SiGe/Si/SiGe quantum wells, with an emphasis on calculating the valley splitting. The theory introduces a valley coupling parameter, vvv_v, which encapsulates the physics of the quantum well interface. The new effective mass parameter is computed by means of a tight binding theory. The resulting formalism provides rather simple analytical results for several geometries of interest, including a finite square well, a quantum well in an electric field, and a modulation doped two-dimensional electron gas. Of particular importance is the problem of a quantum well in a magnetic field, grown on a miscut substrate. The latter may pose a numerical challenge for atomistic techniques like tight-binding, because of its two-dimensional nature. In the effective mass theory, however, the results are straightforward and analytical. We compare our effective mass results with those of the tight binding theory, obtaining excellent agreement.Comment: 13 pages, 7 figures. Version submitted to PR

    Direct Growth of High Mobility and Lowâ Noise Lateral MoS2â Graphene Heterostructure Electronics

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138199/1/smll201604301_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138199/2/smll201604301.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138199/3/smll201604301-sup-0001-S1.pd

    Programmable Heisenberg Interactions Between Floquet Qubits

    Get PDF
    The trade-off between robustness and tunability is a central challenge in the pursuit of quantum simulation and fault-tolerant quantum computation. In particular, quantum architectures are often designed to achieve high coherence at the expense of tunability. Many current qubit designs have fixed energy levels and consequently limited types of controllable interactions. Here by adiabatically transforming fixed-frequency superconducting circuits into modifiable Floquet qubits, we demonstrate an XXZ Heisenberg interaction with fully adjustable anisotropy. This interaction model can act as the primitive for an expressive set of quantum operations, but is also the basis for quantum simulations of spin systems. To illustrate the robustness and versatility of our Floquet protocol, we tailor the Heisenberg Hamiltonian and implement two-qubit iSWAP, CZ and SWAP gates with good estimated fidelities. In addition, we implement a Heisenberg interaction between higher energy levels and employ it to construct a three-qubit CCZ gate, also with a competitive fidelity. Our protocol applies to multiple fixed-frequency high-coherence platforms, providing a collection of interactions for high-performance quantum information processing. It also establishes the potential of the Floquet framework as a tool for exploring quantum electrodynamics and optimal control

    Human embryonic myosin heavy chain cDNA Interspecies sequence conservation of the myosin rod, chromosomal locus and isoform specific transcription of the gene

    Get PDF
    AbstractA 3.6 kilobase cDNA clone coding for the human embryonic myosin heavy chain has been isolated and characterized from an expression library prepared from human fetal skeletal muscle. The derived amino acid sequence for the entire rod part of myosin shows 97% sequence homology between human and rat and a striking interspecies sequence conservation among the charged amino acid residues. The single copy gene is localized to human chromosome 17 and its expression in fetal skeletal muscle is developmentally regulated. The sequence information permits the design of isoform-specific probes for studies on the structure of the gene and its role in normal and defective human myogenesis.Myosin heavy chain cDNA; Nucleotide sequence; Amino acid sequence; Myosin rod; Chromosomal mapping; Gene transcription; (Human embryo

    Imaging cell lineage with a synthetic digital recording system

    Get PDF
    Multicellular development depends on the differentiation of cells into specific fates with precise spatial organization. Lineage history plays a pivotal role in cell fate decisions, but is inaccessible in most contexts. Engineering cells to actively record lineage information in a format readable in situ would provide a spatially resolved view of lineage in diverse developmental processes. Here, we introduce a serine integrase-based recording system that allows in situ readout, and demonstrate its ability to reconstruct lineage relationships in cultured stem cells and flies. The system, termed intMEMOIR, employs an array of independent three-state genetic memory elements that can recombine stochastically and irreversibly, allowing up to 59,049 distinct digital states. intMEMOIR accurately reconstructed lineage trees in stem cells and enabled simultaneous analysis of single cell clonal history, spatial position, and gene expression in Drosophila brain sections. These results establish a foundation for microscopy-readable clonal analysis and recording in diverse systems
    corecore