4,396 research outputs found

    Signatures of unconventional pairing in near-vortex electronic structure of LiFeAs

    Full text link
    A major question in Fe-based superconductors remains the structure of the pairing, in particular whether it is of unconventional nature. The electronic structure near vortices can serve as a platform for phase-sensitive measurements to answer this question. By solving Bogoliubov-de Gennes equations for LiFeAs, we calculate the energy-dependent local electronic structure near a vortex for different nodeless gap-structure possibilities. At low energies, the local density of states (LDOS) around a vortex is determined by the normal-state electronic structure. However, at energies closer to the gap value, the LDOS can distinguish an anisotropic from a conventional isotropic s-wave gap. We show within our self-consistent calculation that in addition, the local gap profile differs between a conventional and an unconventional pairing. We explain this through admixing of a secondary order parameter within Ginzburg-Landau theory. In-field scanning tunneling spectroscopy near vortices can therefore be used as a real-space probe of the gap structure

    Spin-Orbit Coupling in LaAlO3_3/SrTiO3_3 interfaces: Magnetism and Orbital Ordering

    Full text link
    The combination of Rashba spin-orbit coupling and electron correlations can induce unusual phenomena in the metallic interface between SrTiO3_3 and LaAlO3_3. We consider effects of Rashba spin-orbit coupling at this interface in the context of the recent observation of anisotropic magnetism. Firstly, we show how Rashba spin-orbit coupling in a system near a band-edge can account for the observed magnetic anisotropy. Secondly, we investigate the coupling between in-plane magnetic-moment anisotropy and nematicity in the form of an orbital imbalance between dxz_{xz} / dyz_{yz} orbitals. We estimate this coupling to be substantial in the low electron density regime. Such an orbital ordering can affect magneto transport

    Mutations to the caveolin scaffolding domain reduces Caveolin-1 targeting of glycolytic enzymes to lymphocyte membranes [abstract]

    Get PDF
    Abstract only availablePreviously, we found caveolin (CAV-1) expressed by transfection in cultured lymphocytes induced caveolae formation and targeted the glycolytic enzyme phosphofructokinase (PFK) to the membrane. We also found CAV-1 targets other glycolytic enzymes such as aldolase (ALD)and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to the plasma membrane in the CAV-1 transfected lymphocytes. Here we hypothesized that if a mutant CAV-1 (which has essential aromatic residues in the caveolin scaffolding domain (CSD) mutated) is expressed in the lymphocyte then colocalization of the glycolytic enzyme PFK with CAV-1 will be reduced. We tested this hypothesis by comparing the colocalization of CAV-1 with the glycolytic enzymes PFK, ALD and GAPDH in lymphocytes which expressed either a wild type CAV-1 (WT) or a mutant CAV-1 which had either one mutation (SM) or two mutations (DM) in the CSD. Colocalization analysis by confocal microscopy of cells immunoassayed for CAV-1 and ALD was 76.59% in lymphocytes transfected with CAV-1 WT, 23.96% in lymphocytes transfected with CAV-1 SM, and 58.74% in the lymphocytes transfected with CAV-1 DM. Analysis of colocalization of the enzymes PFK, GAPDH, and ALD with CAV-1 averaged 65.17% for the CAV-1 WT cells, 49.29% for the CAV-1 SM cells and 50.81% for the CAV-1 DM cells. The shift in distribution of glycolytic enzymes and CAV-1 in the CAV-1 WT, the CAV-1 SM or DM CAV-1 types indicates that a single mutation to the CSD reduces membrane targeting of glycolytic enzymes, and two mutations in the CSD produces retention of CAV-1 in the cytosol. These results suggest that an intact CSD domain is essential to the CAV-1 targeting of glycolytic enzymes to the membrane

    James Webb Space Telescope Primary Mirror Integration: Testing the Multiwavelength Interferometer on the Test Bed Telescope

    Get PDF
    The James Webb Space Telescope (JWST) integration includes a center of curvature test on its 18 primary mirror segment assemblies (PMSAs). This important test is the only ground test that will demonstrate the ability to align all 18 PMSAs. Using a multi-wavelength interferometer (MWIF) integrated to the test bed telescope (TBT), a one-sixth scale model of the JWST, we verify our ability to align and phase the 18 PMSAs. In this paper we will discuss data analysis and test results when using the MWIF to align the segments of the TBT in preparation for alignment of the JWST

    Dynamics of many-body localization in the presence of particle loss

    Get PDF
    At long times, residual couplings to the environment become relevant even in the most isolated experiments, a crucial difficulty for the study of fundamental aspects of many-body dynamics. A particular example is many-body localization in a cold-atom setting, where incoherent photon scattering introduces both dephasing and particle loss. Whereas dephasing has been studied in detail and is known to destroy localization already on the level of non-interacting particles, the effect of particle loss is less well understood. A difficulty arises due to the 'non-local' nature of the loss process, complicating standard numerical tools using matrix product decomposition. Utilizing symmetries of the Lindbladian dynamics, we investigate the particle loss on both the dynamics of observables, as well as the structure of the density matrix and the individual states. We find that particle loss in the presence of interactions leads to dissipation and a strong suppression of the (operator space) entanglement entropy. Our approach allows for the study of the interplay of dephasing and loss for pure and mixed initial states to long times, which is important for future experiments using controlled coupling of the environment

    Wavefront Calibration Testing of the James Webb Space Telescope Primary Mirror Center of Curvature Optical Assembly

    Get PDF
    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 meter clear aperture, all-reflective, three-mirror anastigmat!. The 18-segment primary mirror (PM) presents unique and challenging assembly, integration, alignment and testing requirements. A full aperture center of curvature optical test is performed in cryogenic vacuum conditions at the integrated observatory level to verify PM performance requirements. Two wavefront calibration tests are utilized to verify the low and Mid/High spatial frequency performance ofthe test system. In this paper the methods and results of the wavefront calibration tests are presented

    Far Infrared and Submillimeter Emission from Galactic and Extragalactic Photo-Dissociation Regions

    Get PDF
    Photodissociation Region (PDR) models are computed over a wide range of physical conditions, from those appropriate to giant molecular clouds illuminated by the interstellar radiation field to the conditions experienced by circumstellar disks very close to hot massive stars. These models use the most up-to-date values of atomic and molecular data, the most current chemical rate coefficients, and the newest grain photoelectric heating rates which include treatments of small grains and large molecules. In addition, we examine the effects of metallicity and cloud extinction on the predicted line intensities. Results are presented for PDR models with densities over the range n=10^1-10^7 cm^-3 and for incident far-ultraviolet radiation fields over the range G_0=10^-0.5-10^6.5, for metallicities Z=1 and 0.1 times the local Galactic value, and for a range of PDR cloud sizes. We present line strength and/or line ratio plots for a variety of useful PDR diagnostics: [C II] 158 micron, [O I] 63 and 145 micron, [C I] 370 and 609 micron, CO J=1-0, J=2-1, J=3-2, J=6-5 and J=15-14, as well as the strength of the far-infrared continuum. These plots will be useful for the interpretation of Galactic and extragalactic far infrared and submillimeter spectra observable with ISO, SOFIA, SWAS, FIRST and other orbital and suborbital platforms. As examples, we apply our results to ISO and ground based observations of M82, NGC 278, and the Large Magellenic Cloud.Comment: 54 pages, 20 figures, accepted for publication in The Astrophysical Journa

    Identifying Very Metal-Rich Stars with Low-Resolution Spectra: Finding Planet-Search Targets

    Full text link
    We present empirical calibrations that estimate stellar metallicity, effective temperature and surface gravity as a function of Lick/IDS indices. These calibrations have been derived from a training set of 261 stars for which (1) high-precision measurements of [Fe/H], T_eff and log g have been made using spectral-synthesis analysis of HIRES spectra, and (2) Lick indices have also been measured. Our [Fe/H] calibration, which has precision 0.07 dex, has identified a number of bright (V < 9) metal-rich stars which are now being screened for hot Jupiter-type planets. Using the Yonsei-Yale stellar models, we show that the calibrations provide distance estimates accurate to 20% for nearby stars. This paper outlines the second tier of the screening of planet-search targets by the N2K Consortium, a project designed to identify the stars most likely to harbor extrasolar planets. Discoveries by the N2K Consortium include the transiting hot Saturn HD 149026 b (Sato et al. 2005, astro-ph/0507009) and HD 88133 b (Fischer et al. 2005). See Ammons et al. (2005, In Press) for a description of the first tier of N2K metallicity screening, calibrations using broadband photometry.Comment: Accepted for publication in the Astrophysical Journa
    corecore