90 research outputs found

    Community detection in temporal multilayer networks, with an application to correlation networks

    Full text link
    Networks are a convenient way to represent complex systems of interacting entities. Many networks contain "communities" of nodes that are more densely connected to each other than to nodes in the rest of the network. In this paper, we investigate the detection of communities in temporal networks represented as multilayer networks. As a focal example, we study time-dependent financial-asset correlation networks. We first argue that the use of the "modularity" quality function---which is defined by comparing edge weights in an observed network to expected edge weights in a "null network"---is application-dependent. We differentiate between "null networks" and "null models" in our discussion of modularity maximization, and we highlight that the same null network can correspond to different null models. We then investigate a multilayer modularity-maximization problem to identify communities in temporal networks. Our multilayer analysis only depends on the form of the maximization problem and not on the specific quality function that one chooses. We introduce a diagnostic to measure \emph{persistence} of community structure in a multilayer network partition. We prove several results that describe how the multilayer maximization problem measures a trade-off between static community structure within layers and larger values of persistence across layers. We also discuss some computational issues that the popular "Louvain" heuristic faces with temporal multilayer networks and suggest ways to mitigate them.Comment: 42 pages, many figures, final accepted version before typesettin

    The Mirage of Triangular Arbitrage in the Spot Foreign Exchange Market

    Full text link
    We investigate triangular arbitrage within the spot foreign exchange market using high-frequency executable prices. We show that triangular arbitrage opportunities do exist, but that most have short durations and small magnitudes. We find intra-day variations in the number and length of arbitrage opportunities, with larger numbers of opportunities with shorter mean durations occurring during more liquid hours. We demonstrate further that the number of arbitrage opportunities has decreased in recent years, implying a corresponding increase in pricing efficiency. Using trading simulations, we show that a trader would need to beat other market participants to an unfeasibly large proportion of arbitrage prices to profit from triangular arbitrage over a prolonged period of time. Our results suggest that the foreign exchange market is internally self-consistent and provide a limited verification of market efficiency

    Multidimensional Pattern Formation Has an Infinite Number of Constants of Motion

    Full text link
    Extending our previous work on 2D growth for the Laplace equation we study here {\it multidimensional} growth for {\it arbitrary elliptic} equations, describing inhomogeneous and anisotropic pattern formations processes. We find that these nonlinear processes are governed by an infinite number of conservation laws. Moreover, in many cases {\it all dynamics of the interface can be reduced to the linear time--dependence of only one ``moment" M0M_0} which corresponds to the changing volume while {\it all higher moments, MlM_l, are constant in time. These moments have a purely geometrical nature}, and thus carry information about the moving shape. These conserved quantities (eqs.~(7) and (8) of this article) are interpreted as coefficients of the multipole expansion of the Newtonian potential created by the mass uniformly occupying the domain enclosing the moving interface. Thus the question of how to recover the moving shape using these conserved quantities is reduced to the classical inverse potential problem of reconstructing the shape of a body from its exterior gravitational potential. Our results also suggest the possibility of controlling a moving interface by appropriate varying the location and strength of sources and sinks.Comment: CYCLER Paper 93feb00

    Singular Laplacian Growth

    Full text link
    The general equations of motion for two dimensional Laplacian growth are derived using the conformal mapping method. In the singular case, all singularities of the conformal map are on the unit circle, and the map is a degenerate Schwarz-Christoffel map. The equations of motion describe the motions of these singularities. Despite the typical fractal-like outcomes of Laplacian growth processes, the equations of motion are shown to be not particularly sensitive to initial conditions. It is argued that the sensitivity of this system derives from a novel cause, the non-uniqueness of solutions to the differential system. By a mechanism of singularity creation, every solution can become more complex, even in the absence of noise, without violating the growth law. These processes are permitted, but are not required, meaning the equation of motion does not determine the motion, even in the small.Comment: 8 pages, Latex, 4 figures, Submitted to Phys. Rev.

    Bayesian genome assembly and assessment by Markov Chain Monte Carlo sampling

    Full text link
    Most genome assemblers construct point estimates, choosing a genome sequence from among many alternative hypotheses that are supported by the data. We present a Markov Chain Monte Carlo approach to sequence assembly that instead generates distributions of assembly hypotheses with posterior probabilities, providing an explicit statistical framework for evaluating alternative hypotheses and assessing assembly uncertainty. We implement this approach in a prototype assembler and illustrate its application to the bacteriophage PhiX174.Comment: 17 pages, 5 figure

    A theory for the impact of a wave breaking onto a permeable barrier with jet generation

    Get PDF
    We model a water wave impact onto a porous breakwater. The breakwater surface is modelled as a thin barrier composed of solid matter pierced by channels through which water can flow freely. The water in the wave is modelled as a finite-length volume of inviscid, incompressible fluid in quasi-one-dimensional flow during its impact and flow through a typical hole in the barrier. The fluid volume moves at normal incidence to the barrier. After the initial impact the wave water starts to slow down as it passes through holes in the barrier. Each hole is the source of a free jet along whose length the fluid velocity and width vary in such a way as to conserve volume and momentum at zero pressure. We find there are two types of flow, depending on the porosity, ß , of the barrier. If ß : 0 = ß < 0.5774 then the barrier is a strong impediment to the flow, in that the fluid velocity tends to zero as time tends to infinity. But if ß : 0.5774 = ß = 1 then the barrier only temporarily holds up the flow, and the decelerating wave water passes through in a finite time. We report results for the velocity and impact pressure due to the incident wave water, and for the evolving shape of the jet, with examples from both types of impact. We account for the impulse on the barrier and the conserved kinetic energy of the flow. Consideration of small ß gives insight into the sudden changes in flow and the high pressures that occur when a wave impacts a nearly impermeable seawall

    Detecting a Currency's Dominance or Dependence using Foreign Exchange Network Trees

    Full text link
    In a system containing a large number of interacting stochastic processes, there will typically be many non-zero correlation coefficients. This makes it difficult to either visualize the system's inter-dependencies, or identify its dominant elements. Such a situation arises in Foreign Exchange (FX) which is the world's biggest market. Here we develop a network analysis of these correlations using Minimum Spanning Trees (MSTs). We show that not only do the MSTs provide a meaningful representation of the global FX dynamics, but they also enable one to determine momentarily dominant and dependent currencies. We find that information about a country's geographical ties emerges from the raw exchange-rate data. Most importantly from a trading perspective, we discuss how to infer which currencies are `in play' during a particular period of time

    A New Class of Nonsingular Exact Solutions for Laplacian Pattern Formation

    Full text link
    We present a new class of exact solutions for the so-called {\it Laplacian Growth Equation} describing the zero-surface-tension limit of a variety of 2D pattern formation problems. Contrary to common belief, we prove that these solutions are free of finite-time singularities (cusps) for quite general initial conditions and may well describe real fingering instabilities. At long times the interface consists of N separated moving Saffman-Taylor fingers, with ``stagnation points'' in between, in agreement with numerous observations. This evolution resembles the N-soliton solution of classical integrable PDE's.Comment: LaTeX, uuencoded postscript file

    H5hut: A high-performance I/O library for particle-based simulations

    Full text link
    Particle-based simulations running on large high-performance computing systems over many time steps can generate an enormous amount of particle- and field-based data for post-processing and analysis. Achieving high-performance I/O for this data, effectively managing it on disk, and interfacing it with analysis and visualization tools can be challenging, especially for domain scientists who do not have I/O and data management expertise. We present the H5hut library, an implementation of several data models for particle-based simulations that encapsulates the complexity of HDF5 and is simple to use, yet does not compromise performance
    • …
    corecore