12 research outputs found

    Review of Controlled Excitation of Non-linear Wave-Particle Interactions in the Magnetosphere

    Get PDF
    Controlled experiments involving injection of 0.5 Hz–8 kHz electromagnetic waves into the Earth's magnetosphere have played an important role in discovering and elucidating wave-particle interactions in near-Earth space. Due to the significant engineering challenges of efficiently radiating in the ELF/VLF: 300 Hz–30 kHz band, few experiments have been able to provide sustained transmissions of sufficient power to excite observable effects for scientific studies. Two noteworthy facilities that were successful in generating a large database of pioneering and repeatable observations were the Siple Station Transmitter in Antarctica and the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Both facilities were able to excite Doppler shifted cyclotron resonance interactions leading to linear and non-linear wave amplification, triggering of free running emissions, and pitch angle scattering of energetic electrons. Amplified and triggered waves were primarily observed on the ground in the geomagnetic conjugate region after traversal of the magnetosphere along geomagnetic field aligned propagation paths or in the vicinity of the transmitter following two traversals of the magnetosphere. In several cases, spacecraft observations of the amplified and triggered signals were also made. The observations show the amplifying wave particle interaction to be dynamically sensitive to specific frequency and also specific frequency-time format of the transmitted wave. Transmission of multiple coherent waves closely spaced in frequency showed that the wave particle interaction requires a minimum level of coherency to enter the non-linear regime. Theory and numerical simulations point to cyclotron resonance with counter streaming particles in the 10–100 keV range as the dominant process. A key feature of the non-linear interaction is the phase-trapping of resonant particles by the wave that is believed to drive non-linear wave amplification and the triggering of free-running emissions. Observations and modeling of controlled wave injections have important implications for naturally occurring whistler mode emissions of hiss and chorus and the broader phenomena of radiation belt dynamics. A review of observational, theoretical, and numerical results is presented and suggestions for future studies are made

    Coexistence of Lightning Generated Whistlers, Hiss and Lower Hybrid Noise Observed by e-POP (SWARM-E)–RRI

    No full text
    Whistler mode waves play a major role in regulating the lifetime of trapped electrons in the Earth’s radiation belts. Specifically, interaction with whistler mode hiss waves is one of the mechanisms that maintains the slot region between the inner and outer radiation belts. The generation mechanism of hiss is a topic still under debate with at least three prominent theories present in the literature. Lightning generated whistlers in their ducted or non-ducted modes are considered to be one of the possible sources of hiss. We present a study of new observations from the Radio Receiver Instrument (RRI) on the Enhanced Polar Outflow Probe (ePOP: also known as SWARM-E). RRI consists of two orthogonal dipole antennas, which enables polarization measurements, when the satellite boresight is parallel to the geomagnetic field. Here we present 105 ePOP - RRI events from 2014–2018, in which lightning whistlers(75) and hiss waves(39) were observed. In more than 50% of those whistler observations, hiss found to co-exist. Moreover, the whistler observations are correlated with observations of wave power at the lower-hybrid resonance. The observations and a whistler mode ray-tracing study suggest that multiple-hop lightning induced whistlers can be a source of hiss and plasma instabilities in the magnetosphere

    On the use of ELF/VLF emissions triggered by HAARP to simulate PLHR and to study associated MLR events

    No full text
    International audienceAbstract A spectrogram of Power Line Harmonic Radiation (PLHR) consists of a set of lines with frequency spacing corresponding exactly to 50 or 60 Hz. It is distinct from a spectrogram of Magnetospheric Line Radiation (MLR) where the lines are not equidistant and drift in frequency. PLHR and MLR propagate in the ionosphere and the magnetosphere and are recorded by ground experiments and satellites. If the source of PLHR is evident, the origin of the MLR is still under debate and the purpose of this paper is to understand how MLR lines are formed. The ELF waves triggered by High-frequency Active Auroral Research Program (HAARP) in the ionosphere are used to simulate lines (pulses of different lengths and different frequencies). Several receivers are utilized to survey the propagation of these pulses. The resulting waves are simultaneously recorded by ground-based experiments close to HAARP in Alaska, and by the low-altitude satellite DEMETER either above HAARP or its magnetically conjugate point. Six cases are presented which show that 2-hop echoes (pulses going back and forth in the magnetosphere) are very often observed. The pulses emitted by HAARP return in the Northern hemisphere with a time delay. A detailed spectral analysis shows that sidebands can be triggered and create elements with superposed frequency lines which drift in frequency during the propagation. These elements acting like quasi-periodic emissions are subjected to equatorial amplification and can trigger hooks and falling tones. At the end all these known physical processes lead to the formation of the observed MLR by HAARP pulses. It is shown that there is a tendency for the MLR frequencies of occurrence to be around 2 kHz although the exciting waves have been emitted at lower and higher frequencies. Graphical Abstrac

    Globally coherent short duration magnetic field transients and their effect on ground based gravitational-wave detectors

    No full text
    International audienceIt has been recognized that the magnetic fields from the Schumann resonances could affect the search for a stochastic gravitational-wave background by LIGO and Virgo. Presented here are the observations of short duration magnetic field transients that are coincident in the magnetometers at the LIGO and Virgo sites. Data from low-noise magnetometers in Poland and Colorado, USA, are also used and show short duration magnetic transients of global extent. We measure at least 2.3 coincident (between Poland and Colorado) magnetic transient events per day where one of the pulses exceeds 200 pT. Given the recently measured values of the magnetic coupling to differential arm motion for Advanced LIGO, there would be a few events per day that would appear simultaneously at the gravitational-wave detector sites and could move the test masses of order 10(−)(18) m. We confirm that in the advanced detector era short duration transient gravitational-wave searches must account for correlated magnetic field noise in the global detector network

    Correlated 1-1000 Hz magnetic field fluctuations from lightning over earth-scale distances and their impact on gravitational wave searches

    No full text
    We report Earth-scale distance magnetic correlations from lightning strokes in the frequency range 1-1000 Hz at several distances ranging from 1100 to 9000 km. Noise sources which are correlated on Earth-scale distances can affect future searches for gravitational-wave signals with ground-based gravitational-wave interferometric detectors. We consider the impact of correlations from magnetic field fluctuations on gravitational-wave searches due to Schumann resonances (100 Hz). We demonstrate that individual lightning strokes are a likely source for the observed correlations in the magnetic field fluctuations at gravitational-wave observatories and discuss some of their characteristics. Furthermore, we predict their impact on searches for an isotropic gravitational-wave background, as well as for searches looking for short-duration transient gravitational waves, both unmodeled signals (bursts) as well as modeled signals (compact binary coalescence). Whereas the recent third observing run by LIGO and Virgo was free of an impact from correlated magnetic field fluctuations, future runs could be affected. For example, at current magnetic coupling levels, neutron star inspirals in third generation detectors are likely to be contaminated by multiple correlated lightning glitches. We suggest that future detector design should consider reducing lightning coupling by, for example, reducing the lightning-induced beam tube currents that pass through sensitive magnetic coupling regions in current detectors. We also suggest that the diurnal and seasonal variation in lightning activity may be useful in discriminating between detector correlations that are produced by gravitational waves and those produced by lightning

    Correlated 1-1000 Hz magnetic field fluctuations from lightning over earth-scale distances and their impact on gravitational wave searches

    No full text
    We report Earth-scale distance magnetic correlations from lightning strokes in the frequency range 1-1000 Hz at several distances ranging from 1100 to 9000 km. Noise sources which are correlated on Earth-scale distances can affect future searches for gravitational-wave signals with ground-based gravitational-wave interferometric detectors. We consider the impact of correlations from magnetic field fluctuations on gravitational-wave searches due to Schumann resonances (100 Hz). We demonstrate that individual lightning strokes are a likely source for the observed correlations in the magnetic field fluctuations at gravitational-wave observatories and discuss some of their characteristics. Furthermore, we predict their impact on searches for an isotropic gravitational-wave background, as well as for searches looking for short-duration transient gravitational waves, both unmodeled signals (bursts) as well as modeled signals (compact binary coalescence). Whereas the recent third observing run by LIGO and Virgo was free of an impact from correlated magnetic field fluctuations, future runs could be affected. For example, at current magnetic coupling levels, neutron star inspirals in third generation detectors are likely to be contaminated by multiple correlated lightning glitches. We suggest that future detector design should consider reducing lightning coupling by, for example, reducing the lightning-induced beam tube currents that pass through sensitive magnetic coupling regions in current detectors. We also suggest that the diurnal and seasonal variation in lightning activity may be useful in discriminating between detector correlations that are produced by gravitational waves and those produced by lightning

    A Statistical Study of Magnetopause Boundary Layer Energetic Electron Enhancements Using MMS

    No full text
    We took a survey of low-latitude boundary layer crossings by the Magnetospheric Multiscale (MMS) mission. Out of 250 total crossings, about half showed enhancements of high-energy (\u3e30 keV) electrons in the FEEPS sensor and a little less than half of those energetic electron events had whistler-mode waves present. Energetic electron enhancements were more likely to be present at magnetic local times closer to noon and at distances of less than about 20 Earth radii, but there was seemingly no correlation with magnetic latitude. For almost all of these events, the pitch angles of the FEEPS electrons were peaked at 90o or isotropic, not field-aligned. Almost all events had an elevated velocity moment within a few minutes of the whistler waves, suggesting reconnection nearby, but only a few showed reconnection jets with a sudden spike and immediate drop within a few minutes. Overall, energetic electron enhancements are a fairly common occurrence and are likely associated with reconnection. Using test particle simulations, we found that phase trapping from non-linear whistler waves (typically invoked in radiation belt acceleration) could be a viable method of accelerating these electrons within the boundary layer
    corecore